Skip to main content
Log in

RETRACTED ARTICLE: Synthesis and investigation of Sm3+-doped Mn0.5Cu0.5Fe2O4 nanoferrites for microstrip patch antenna application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 04 October 2023

This article has been updated

Abstract

Nanoferrites with chemical formulae of CuFe2O4 (CFO), Mn0.5Cu0.5Fe2O4 (MCFO), and Mn0.5Cu0.5SmxFe2−xO4 (SMCFO) were synthesized by the sonochemical method as substrate material for microstrip patch antennas. The structural, oxidation, and vibrational characteristics of the nanoferrite substrate were analyzed through X-ray diffraction, X-ray photoelectron, and infrared spectroscopy. The lattice constant of the CFO nanoferrite is 8.413 Å, whereas that of MCFO is 8.429 Å, which is smaller than that of SMCFO nanoferrite. The spherical morphology of the nanoferrite substrate was observed through field-emission scanning electron microscopy images. The magnetic properties of the pristine and Sm3+-doped Mn0.5Cu0.5Fe2O4 nanoferrites were studied using a vibrating sample magnetometer. The dielectric permittivity (εr) and dielectric loss tangent (tan δe) of the prepared nanoferrites were used as substrate to design the microstrip patch antenna by simulation using a high-frequency structure simulator. The RL value of the simulated microstrip patch antennas was in the range of − 17.80 to − 46.28 dB at a frequency of 25 GHz. The voltage standing wave ratio values of the simulated microstrip patch antenna were between 0.08 and 2.41. Thus, it was concluded that the prepared materials can play an important role in developing flexible substrates for antennas in 5G mobile application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing and data citation is encouraged and the authors declare that [the/all other] data supporting the findings of this study are available within the article.

Change history

References

  1. M.A. Rahman, M.T. Islam, M.J. Singh, I. Hossain, H. Rmili, M. Samsuzzaman, Magnetic, dielectric and structural properties of CoxZn(0.90–x)Al0.10Fe2O4 synthesized by sol–gel method with application as flexible microwave substrates for microstrip patch antenna. J. Mater. Res. Technol. 16, 934–943 (2022). https://doi.org/10.1016/j.jmrt.2021.12.058

    Article  CAS  Google Scholar 

  2. R. Cicchetti, E. Miozzi, O. Testa, Wideband and UWB antennas for wireless applications: a comprehensive review. Hindawi. Int. J. Antennas Propag. 2017, 2390808 (2017)

    Google Scholar 

  3. S.R. Bhongale, H.R. Ingavale, T.J. Shinde, P.N. Vasambekar, Microwave sintered MgCd ferrite substrates for microstrip patch antennas in X-band. Int. J. Electron. Commun. 96, 246–251 (2018). https://doi.org/10.1016/j.aeue.2018.09.040

    Article  Google Scholar 

  4. A. Motevasselian, W.G. Whittow, Patch size reduction of rectangular microstrip antennas by means of a cuboid ridge. IET Microw. Antennas Propag. 9(15), 1727–1732 (2015). https://doi.org/10.1049/iet-map.2014.0559

    Article  Google Scholar 

  5. H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromag-netics: concept and applications. IEEE Trans. Antennas Propag. 52, 1558–1567 (2004). https://doi.org/10.1109/TAP.2004.829413

    Article  Google Scholar 

  6. K. Borah, N.S. Bhattacharyya, Magneto-dielectric composite with ferrite inclusions as substrates for microstrip patch antennas at microwave frequencies. Compos. Part B 43, 1309–14 (2012). https://doi.org/10.1016/j.compositesb.2011.11.067

    Article  CAS  Google Scholar 

  7. S.R. Bhongale, Mg–Nd–Cd ferrite as substrate for X-band microstrip patch antenna. J. Magn. Magn. Mater. 499, 165918 (2020). https://doi.org/10.1016/j.jmmm.2019.165918

    Article  CAS  Google Scholar 

  8. N.K. Saxena, N. Kumar, P.K. Pourush, Radiation characteristics of microstrip rectangular patch antenna fabricated on LiTiMg ferrite substrate. AEU—Int. J. Electr. Commun. 69(12), 1741–1744 (2015). https://doi.org/10.1016/j.aeue.2015.08.005

    Article  Google Scholar 

  9. S. Bae, Y.K. Kong, A. Lyle, Effect of Ni–Zn ferrite on bandwidth and radiation efficiency of embedded antenna for mobile phone. J. Appl. Phys. 103, 07E929 (2008). https://doi.org/10.1063/1.2838619

    Article  CAS  Google Scholar 

  10. C.A. Stergiou, G. Litsardakis, Y-type hexagonal ferrites for microwave absorber and antenna applications. J. Magn. Magn. Mater. 405, 54–61 (2016). https://doi.org/10.1016/j.jmmm.2015.12.027

    Article  CAS  Google Scholar 

  11. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design. IEEE Trans. Magn. 43, 6–10 (2007). https://doi.org/10.1109/TMAG.2006.886321

    Article  CAS  Google Scholar 

  12. S. Li, M. Zhao, J. Xue, R. Zhao, Effects of edge type and reconstruction on the electronic properties and magnetism of 1T′-ReS2 nanoribbons: a study based on DFT calculations. J. Magn. Magn. Mater. 567, 170351 (2023). https://doi.org/10.1016/j.jmmm.2022.170351

    Article  CAS  Google Scholar 

  13. H. Zhang, Y. Xiao, Z. Xu, M. Yang, L. Zhang, L. Yin, S. Chai, G. Wang, L. Zhang, X. Cai, Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn3.0Ag0.5Cu composite solders. Intermetallics 150, 107683 (2022). https://doi.org/10.1016/j.intermet.2022.107683

    Article  CAS  Google Scholar 

  14. M. Fu, W. Chen, Y. Lei, H. Yu, Y. Lin, M. Terrones, Biomimetic construction of ferrite quantum Dot/graphene heterostructure for enhancing Ion/charge transfer in supercapacitors. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300940

    Article  Google Scholar 

  15. M.M. Syazwan, A.N. Hapishah, M.N. Hamidon, I. Ismail, I.H. Hasan, Design and development of Ni0.75Zn0.25Fe2O4/MWCNT microstrip patch antenna (MPA) for ISM band spectrum applications. Synth. Metals 271, 116630 (2021). https://doi.org/10.1016/j.synthmet.2020.116630

    Article  CAS  Google Scholar 

  16. R. Vinaykumar, J. Bera, Characterizations of low-temperature sintered, BaCo1.3Ti1.3Fe9.4O19 M-type ferrite for high-frequency antenna application. J. Magn. Magn. Mater. 451, 614–619 (2018). https://doi.org/10.1016/j.jmmm.2017.11.120

    Article  CAS  Google Scholar 

  17. R.R. Kanna, Structural, morphological and optomagnetic properties of GO/Nd/Cu-Mn ferrite ternary nanocomposite. Ceram. Int. 45(13), 16138–16146 (2019). https://doi.org/10.1016/j.ceramint.2019.05.132

    Article  CAS  Google Scholar 

  18. S. Yuvaraj, N. Manikandan, G. Vinitha, Influence of copper ions on structural and non-linear optical properties in manganese ferrite nanomaterials. Opt. Mater. 73, 428–436 (2017). https://doi.org/10.1016/j.optmat.2017.08.027

    Article  CAS  Google Scholar 

  19. J.J. Vijaya, G. Sekaran, M. Bououdina, Effect of Cu2+ doping on structural, morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures. Ceram. Int. 41(1), 15–26 (2015). https://doi.org/10.1016/j.ceramint.2013.10.145

    Article  CAS  Google Scholar 

  20. R. Rajesh Kanna, K. Sakthipandi, Structural, morphological, and optomagnetic properties of La/Cu/Cu-Mn ferrite ternary nanocomposites. J. Electron. Mater. 49, 1110–1119 (2020). https://doi.org/10.1007/s11664-019-07729-y

    Article  CAS  Google Scholar 

  21. E.R. Kumar, R. Jayaprakash, G.S. Devi, P.S.P. Reddy, Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. J. Magn. Magn. Mater. 355, 87–92 (2014). https://doi.org/10.1016/j.jmmm.2013.11.051

    Article  CAS  Google Scholar 

  22. M.A. Ahmed, A.A. Azab, E.H. El-Khawas, E.A. El Bast, Characterization and transport properties of mixed ferrite system Mn1-xCuxFe2O4; 0.0 ≤ x ≤ 0.7. Synthesis and reactivity in inorganic. Metal-Org. Nano-Metal Chem. 46(3), 376–384 (2016). https://doi.org/10.1080/15533174.2014.988243

    Article  CAS  Google Scholar 

  23. R.R. Kanna, K. Sakthipandi, S.M.S. Mohamed Aliar Maraikkayar, N. Lenin, M. Sivabharathy, Doping effect of rare-earth (lanthanum, neodymium and gadolinium) ions on structural, optical, dielectric and magnetic properties of copper nanoferrites. J. Rare Earths 36(12), 1299–1309 (2018). https://doi.org/10.1016/j.jre.2018.03.033

    Article  CAS  Google Scholar 

  24. R.R. Kanna, N. Lenin, K. Sakthipandi, M. Sivabharathy, Impact of lanthanum on structural, optical, dielectric and magnetic properties of Mn1-xCuxFe1.85La0.15O4 spinel nanoferrites. Ceram. Int. 43(17), 15868–15879 (2017). https://doi.org/10.1016/j.ceramint.2017.08.160

    Article  CAS  Google Scholar 

  25. P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, P.B. Barman, V. Sharma, P. Sharma, Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 479, 317–325 (2019). https://doi.org/10.1016/j.jmmm.2019.02.048

    Article  CAS  Google Scholar 

  26. S. Singh, P. Kaur, V. Kumar, K.B. Tikoo, S. Singhal, Traversing the advantageous role of samarium doped spinel nanoferrites for photocatalytic removal of organic pollutants. J. Rare Earths 39(7), 781–789 (2021). https://doi.org/10.1016/j.jre.2020.12.008

    Article  CAS  Google Scholar 

  27. M.K. Kokare, N.A. Jadhav, V. Singh, S.M. Rathod, Effect of Sm substitution on the structural and magnetic properties of NiCo nanoferrites. Opt. Laser Technol. 112, 107–116 (2019). https://doi.org/10.1016/j.optlastec.2018.10.045

    Article  CAS  Google Scholar 

  28. M.A. Abdo, A.A. El-Daly, Sm-substituted copper-cobalt ferrite nanoparticles: preparation and assessment of structural, magnetic and photocatalytic properties for wastewater treatment applications. J. Alloys Comp. 883, 160796 (2021). https://doi.org/10.1016/j.jallcom.2021.160796

    Article  CAS  Google Scholar 

  29. M. Yousaf, A. Noor, S. Xu, M.N. Akhtar, B. Wang, Magnetic characteristics and optical band alignments of rare earth (Sm, Nd ) doped garnet ferrite nanoparticles (NPs). Ceram. Int. 46(10), 16524–16532 (2020). https://doi.org/10.1016/j.ceramint.2020.03.219

    Article  CAS  Google Scholar 

  30. Y. Slimani, M.A. Almessiere, S. Guner, B. Aktas, S.E. Shirsath, M.V. Silibin, A.V. Trukhanov, A. Baykal, Impact of Sm3+ and Er3+ cations on the structural, optical, and magnetic traits of spinel cobalt ferrite nanoparticles: comparison investigation. ACS Omega 7(7), 6292–6301 (2022). https://doi.org/10.1021/acsomega.1c06898

    Article  CAS  Google Scholar 

  31. A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.E. Shirsath, S.S. Jadhav, Role of composition and grain size in controlling the structure sensitive magnetic properties of Sm3+ substituted nanocrystalline Co-Zn ferrites. J. Rare Earths 38(10), 1069–1075 (2020). https://doi.org/10.1016/j.jre.2019.09.013

    Article  CAS  Google Scholar 

  32. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  33. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.17696

    Article  Google Scholar 

  34. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  35. S.R. Yousefi, A. Sobhani, H.A. Alshamsic, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500–11512 (2021). https://doi.org/10.1039/D0RA10288A

    Article  CAS  Google Scholar 

  36. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  37. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  38. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2): synthesis, characterization and experimental investigation. Adv. Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  39. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci. Mater. Electron. 27, 1244–1253 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  40. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, M. Salavati-Niasari, Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab. J. Chem. 16(4), 104579 (2023). https://doi.org/10.1016/j.arabjc.2023.104579

    Article  CAS  Google Scholar 

  41. S. Pan, M. Lin, M. Xu, S. Zhu, L.A. Bian, G. Li, A low-profile programmable beam scanning holographic array antenna without phase shifters. IEEE Internet Things 9(11), 8838–8851 (2022). https://doi.org/10.1109/JIOT.2021.3116158

    Article  Google Scholar 

  42. M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A.D. Korkmaz, S.E. Shirsath, A. Baykal, Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019). https://doi.org/10.1016/j.ultsonch.2019.104654

    Article  CAS  Google Scholar 

  43. R.R. Kanna, K. Sakthipandi, A.S. Kumar, N.R. Dhineshbabu, Synthesis of dysprosium/Mn–Cu ferrite binary nanocomposite: analysis of structural, morphological, dielectric, and optomagnetic properties. Ceram. Int. 46, 13695–13703 (2020). https://doi.org/10.1016/j.ceramint.2020.02.157

    Article  CAS  Google Scholar 

  44. S.P. Keerthana, R. Yuvakkumar, P. Senthil Kumar, G. Ravi, D. Velauthapillai, Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ. Res. 197, 111047 (2021). https://doi.org/10.1016/j.envres.2021.111047

    Article  CAS  Google Scholar 

  45. M. Yehia, A. Hashhash, Structural and magnetic study of Sm doped NiFe2O4 nanoparticles. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00988-9

    Article  Google Scholar 

  46. N. Senthilkumar, E. Nandhakumar, P. Priya, M. Selvakumar, I. VethaPotheher, Green and sustainable preparation of flower-like ZnO nanostructures via soft bio-template approach for the enhancement of biomedical applications. Appl. Phys. A 78, 128 (2022). https://doi.org/10.1007/s00339-021-05192-3

    Article  CAS  Google Scholar 

  47. R.R. Kanna, N. Lenin, K. Sakthipandi, A.S. Kumar, Structural, optical, dielectric and magnetic studies of gadolinium-added Mn-Cu nanoferrites. J. Magn. Magn Mater. 453, 78–90 (2018). https://doi.org/10.1016/j.jmmm.2018.01.019

    Article  CAS  Google Scholar 

  48. S.E. Shirsath, R.H. Kadam, K.M. Batoo, D. Wang, S. Li, Co–Al-substituted strontium hexaferrite for rare earth free permanent magnet and microwave absorber application. J. Phys. D Appl. Phys. 54, 024001 (2020). https://doi.org/10.1088/1361-6463/abb9d5

    Article  CAS  Google Scholar 

  49. M. Dhiman, S. Rana, K. Batoo, J.K. Sharma, M. Singh, Synthesis and characterization of Y and Sm doped Mg nanoferrites. Integr. Ferroelectr. 184, 151–157 (2017). https://doi.org/10.1080/10584587.2017.1368634

    Article  CAS  Google Scholar 

  50. M.M. Ahamed, K. Bhowmik, A.A. Suman, Analysis and design of rectangular microstrip patch antenna on different resonant frequencies for pervasive wireless communication. Int. J. Sci. Technol. Res. 1, 108–111 (2012)

    Google Scholar 

  51. N. Irfan, M.C.E. Yagoub, K. Hettak, Design of a microstrip-line-fed inset patch antenna for RFID applications. IACSIT Int. J. Eng. Technol. 4, 558–561 (2012). https://doi.org/10.7763/IJET.2012.V4.432

    Article  Google Scholar 

  52. A. Saini, A. Thakur, P. Thakur, Matching permeability and permittivity of Ni0.5Zn0.3 Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna. J. Mater Sci Mater. Electr. 27, 2816–2823 (2015)

    Article  Google Scholar 

  53. SZ Nyunt (2018) Implementation of microstrip patch antenna for wi-fi applications, Am. J. Comput. Sci. Technol. 1:63–73. https://doi.org/10.11648/j.ajcst.20180103.12

  54. S. Palanivel Rajan, C. Vivek, Analysis and design of microstrip patch antenna for radar communication. J. Electr. Eng. Technol. 14, 923–929 (2019). https://doi.org/10.1007/s42835-018-00072-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RRK: conceptualization, methodology, re-writing, reviewing and editing of the manuscript, correspondence of the manuscript. PJ: preparation and characterization of the samples; preparation of the manuscript. NL: data analyzing and preparation of data for tables, assisted for preparation of the manuscript. GM: supported for experimental data analyzing. MPK: supported for experimental data analyzing. TVK: supported for experimental data analyzing.

Corresponding author

Correspondence to R. Rajesh Kanna.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We are confirming that the article is original and unpublished, and is not being or having been submitted for publication to any other journal, and that all the authors have read the paper and agree with its submission to Journal of Materials Science: Materials in Electronics.

Human and animal participants

No Research involving Human Participants and/or Animals in the prepared manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-023-11401-x

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanna, R.R., Jeyakumar, P., Lenin, N. et al. RETRACTED ARTICLE: Synthesis and investigation of Sm3+-doped Mn0.5Cu0.5Fe2O4 nanoferrites for microstrip patch antenna application. J Mater Sci: Mater Electron 34, 1417 (2023). https://doi.org/10.1007/s10854-023-10815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10815-x

Navigation