Skip to main content
Log in

Investigation of electrochemical behavior of Co3O4–Mn2O3/rGO nanocomposite for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxides exhibit high theoretical specific capacitance due to its multiple oxidation states and when combined with reduced graphene oxide (rGO) may produce synergistic effects. Hence various metal oxides with rGO have been studied for supercapacitor properties. In this work, a two-step hydrothermal approach was followed to produce Co3O4 – Mn2O3 / rGO nanocomposite with the average crystallite size of 14 nm. Functional groups in the rGO allow for the nucleation to occur on its surface which results in the successful metal oxide nanocomposite formation. The formed metal oxides has average particle diameter of 29 nm with surface area of 14.139 m2/g. Mesoporous nature of the nanocomposite was obtained with an average pore diameter below 20 nm. The presence of more active sites for the electrolyte ions in the electrode surface results in higher specific capacitance of 663 F/g at 1 A/g and low electrode resistance of 0.39 Ω. Thus the electrochemical studies reveal the diffusion controlled intercalation process over a potential range of 0–0.6 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. S. Huang, X. Zhu, S. Sarkar, Y. Zhao, Challenges and opportunities of supercapacitors. APL Mater. (2019). https://doi.org/10.1063/1.5116146. 7 100901.

    Article  Google Scholar 

  2. P. Dhruba, K. Chatterjee, Arun, Nandi, A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 9, 15880–15918 (2021). https://doi.org/10.1039/D1TA02505H

    Article  Google Scholar 

  3. S. Banerjee, B. De, P. Sinha, J. Cherusseri, K.K. Kar, Applications of Supercapacitors, in Handbook of Nanocomposite Supercapacitor Materials I. ed. by K. Kar (Springer Series in Materials Science, 300 Springer, Cham, 2020), pp.54–87

    Google Scholar 

  4. D. Wu, X. Xie, Y. Zhang, D. Zhang, W. Du, X. Zhang, B. Wang, MnO2/Carbon Composites for Supercapacitor: synthesis and Electrochemical Performance. Front. Mater. 7, 2 (2020). https://doi.org/10.3389/fmats.2020.00002

    Article  Google Scholar 

  5. M. Yaseen, M.A.K. Khattak, M. Humayun, M. Usman, S.S. Shah, S. Bibi, B.S.U. Hasnain, S.M. Ahmad, A. Khan, N. Shah, A.A. Tahir, H. Ullah, A review of supercapacitors: materials design, modification, and applications. Energies 14, 7779 (2021). https://doi.org/10.3390/en14227779

    Article  CAS  Google Scholar 

  6. F. Xueyang Wang, D. Yuan, J. Xue, J. Liu, Y. Wei, J. Wang, Q. Wang, Q. Qu, Zhang, MnO2 Nanoflowers decorated on ZIF-8-ZnO with Ni foam supportfor high-performance supercapacitors (Nano Mat, Chem, 2022). https://doi.org/10.1002/cnma.202200243

    Book  Google Scholar 

  7. M. Aqib Muzaffar, Basheer Ahamed, J. Kalim Deshmukh Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustainable Energy Rev. 101, 123–145 (2019). https://doi.org/10.1016/j.rser.2018.10.026

    Article  CAS  Google Scholar 

  8. Y. Pan, K. Xu, C. Wu, Recent progress in supercapacitors based on the advanced carbon electrodes. nanotechnol Rev. 8, 299–314 (2019). https://doi.org/10.1515/ntrev-2019-0029

    Article  CAS  Google Scholar 

  9. M.B. Askari, P. Salarizadeh, A. Beheshti-Marnani, A. Di, NiO–Co3O4–rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells. Adv. Mater. Interfaces 8, 2100149 (2021). https://doi.org/10.1002/admi.202100149

    Article  CAS  Google Scholar 

  10. H.J. Trinity Rabecca, A.J. Clement Lourduraj, Synthesis of reduced graphene oxide and a study on its electrochemical performance for supercapacitor applications. Mater. Today: Proc. 68P3, 335–340 (2022). https://doi.org/10.1016/j.matpr.2022.05.541

    Article  CAS  Google Scholar 

  11. J.P.B. Hajar Ghannam, Silva, C. Adil, Effect of ZnO surface morphology on its electrochemical performance. RSC Adv. 11, 23346–23354 (2021). https://doi.org/10.1039/D1RA03653J

    Article  Google Scholar 

  12. W. Zhang, H. Xu, F. Xie, X. Ma, N. Bo, M. Chen, H. Zhang, Y. Zhang, D. Long, General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 13, 471 (2022). https://doi.org/10.1038/s41467-022-28180-4

    Article  CAS  Google Scholar 

  13. A. Kostuch, J. Grybos, S. Wierzbicki, Z. Sojka, K. Kruczała, Selectivity of mixed Iron-cobalt spinels deposited on a N,S-Doped Mesoporous Carbon support in the Oxygen reduction reaction in Alkaline Media. Materials. 14, 820 (2021). https://doi.org/10.3390/ma14040820

    Article  CAS  Google Scholar 

  14. S. Wu Yinbo, C. Ruirui, Facile synthesis of cobalt oxide as an efficient electrocatalyst for hydrogen evolution reaction. Front. Chem 8, 386 (2020). https://doi.org/10.3389/fchem.2020.00386

    Article  CAS  Google Scholar 

  15. E. Arciga-Duran, Y. Meas, J.J. Pérez-Bueno, J.C. Ballesteros, G. Trejo, Electrochemical synthesis of Co3O4-x films for their application as oxygen evolution reaction electrocatalysts: role of oxygen vacancies. J. Electrochem. Soc. 165, H3178 (2018). https://doi.org/10.1149/2.0261804jes

    Article  CAS  Google Scholar 

  16. T. Shen, Z. Zhao, Q. Zhong, Y. Qin, Z.-X. Guo, Preparation of graphene/Au aerogel film through the hydrothermal process and application for H 2 O 2 detection. RSC Adv. 9, 13042–13047 (2019). https://doi.org/10.1039/C9RA00516A

    Article  CAS  Google Scholar 

  17. S. Xiao, P. Xu, Q. Peng, J. Chen, J. Huang, Wang, Faming, N. Noor, Layer-by-Layer Assembly of Polyelectrolyte Multilayer onto PET Fabric for highly tunable dyeing with Water Soluble Dyestuffs. Polymer. 9, 735 (2017). https://doi.org/10.3390/polym9120735

    Article  CAS  Google Scholar 

  18. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges Wiss Göttingen. 26, 98–100 (1918). https://doi.org/http://eudml.org/doc/59018

    Google Scholar 

  19. J.I. Langford, A.J.C. Wilson, Scherrer after Sixty Years: a Survey and some New results in the determination of Crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/s0021889878012844

    Article  CAS  Google Scholar 

  20. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  21. C. Sengottaiyan, R. Jayavel, R.G. Shrestha, P.H. Jonathan, A. Katsuhiko, K.S. Lok, Electrochemical Supercapacitance Properties of reduced graphene Oxide/Mn2O3:Co3O4 nanocomposite. J. Inorg. Organomet. Polym. 27, 576–585 (2017). https://doi.org/10.1007/s10904-017-0501-4

    Article  CAS  Google Scholar 

  22. H. Cao, X. Peng, M. Zhao, P. Liu, B. Xu, J. Guo, Oxygen functional groups improve the energy storage performance graphene electrochemical supercapacitors. RSC Adv. 8, 2858–2865 (2018). https://doi.org/10.1039/C7RA12425B

    Article  CAS  Google Scholar 

  23. P. Balu, I.V. Asharani, D. Thirumalai, Catalytic degradation of hazardous textile dyes by iron oxide nanoparticles prepared from Raphanus sativus leaves’ extract: a greener approach. J. Mater. Sci: Mater. Electron. 31, 10669–10676 (2020). https://doi.org/10.1007/s10854-020-03616-z

    Article  CAS  Google Scholar 

  24. J.-C. Shu, X.-Y. Huang, Mao-Sheng Cao, Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon. 174, 638–646 (2021). https://doi.org/10.1016/j.carbon.2020.11.087

    Article  CAS  Google Scholar 

  25. M.S. Yadav, Synthesis and characterization of Mn2O3 – Mn3O4 nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J. Energy Storage. (2020). https://doi.org/10.1016/j.est.2019.101079

    Article  Google Scholar 

  26. H. Rahaman, R. Laha, S. Ghosh, D. Maiti, Fabrication of Mn2O3 nanorods: an efficient catalyst for selective transformation of alcohol to aldehyde. RSC Adv. 5, 33923–33929 (2015). https://doi.org/10.1039/c5ra02504d

    Article  CAS  Google Scholar 

  27. C.P. Lee, B.T. Murti, P.K. Yang, F. Rossi, C.R. Carraro, Maboudian, Cobalt Oxide-Decorated Silicon Carbide Nano-Tree array electrode for Micro-Supercapacitor Application. Materials. 14, 4514 (2021). https://doi.org/10.3390/ma14164514

    Article  CAS  Google Scholar 

  28. Ahmed M. Abdel-Raoof, Ayman OE. Osman, Ebrahim A. El-Desouky, Ashraf Abdel-Fattah, Rady F. Abdul-Kareem, Elsayed Elgazzar, Fabrication of an (α-Mn 2 O 3:Co)-decorated CNT highly sensitive screen printed electrode for the optimization and electrochemical determination of cyclobenzaprine hydrochloride using response surface methodology. RSC Adv. 10, 24985–24993 (2020). https://doi.org/10.1039/D0RA05106C

    Article  CAS  Google Scholar 

  29. Gokuladeepan Periyasamy, Indrajit M. Patil, Bhalchandra Kakade, J. Pandiyarasan Veluswamy, Hiroya Ikeda Archana, Karthigeyan Annamalai, Reduced graphene oxide-wrapped α-Mn2O3/α-MnO2 nanowires for electrocatalytic oxygen reduction in alkaline medium. Mater. Sci: Mater. Electron. 33, 8644–8654 (2022). https://doi.org/10.1007/s10854-021-06721-9

    Article  CAS  Google Scholar 

  30. Y. Dong, N. Xiaoyu, W. Song, D. Wang, Chen, Liqiang, Yuan, Fulong, Y. Zhu, Facile synthesis of Vanadium oxide/reduced graphene oxide composite catalysts for enhanced hydroxylation of benzene to phenol. Catalysts 6, 74 (2016). https://doi.org/10.3390/catal6050074

    Article  CAS  Google Scholar 

  31. K.J. Noémie Elgrishi, B.D. Rountree, E.S. McCarthy, T.T. Rountree, Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 2:197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  32. S.S. Pradeepa, P. Rajkumar, K. Diwakar, K. Sutharthani, R. Subadevi, M. Sivakumar, A facile one-pot hydrothermal synthesis of Zn, Mn co-doped NiCo2O4 as an efficient electrode for supercapacitor applications. Chemistryselect 6(27), 6851–6862 (2021). https://doi.org/10.1002/slct.202101708

    Article  CAS  Google Scholar 

  33. M. Isacfranklin, B. Jansi Rani, P. Senthil Kumar, R. Yuvakkumar, G. Ravi, A. Manigandan, Mariyappan Thambidurai, Cuong Dang, Dhayalan Velauthapillai, Electrochemical energy storage and conversion applications of CoSn(OH)6 materials. Int. J. Hydrogen Energy 47, 41948–41955 (2022). https://doi.org/10.1016/j.ijhydene.2021.08.001

    Article  CAS  Google Scholar 

  34. Y. Yang, Z.-. Pan, Y.-Y. Wang, Ma, Yuan, C. Li, Y.-. Lu, X.-L. Wu, Ionic-liquid-bifunctional wrapping of Ultrafine SnO2 nanocrystals into N-doped Graphene Networks: high pseudocapacitive Sodium Storage and High-Performance Sodium-Ion full cell. Nanoscale. 11, 14616–14624 (2019). https://doi.org/10.1039/C9NR02542A

    Article  CAS  Google Scholar 

  35. H. Fangyan Liu, L. Su, H. Jin, X. Zhang, W. Chu, Yang, Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. J. Colloid Interface Sci. 505, 796–804 (2017). https://doi.org/10.1016/j.jcis.2017.06.058

    Article  CAS  Google Scholar 

  36. C.I. Priyadharsini, G. Marimuthu, T. Pazhanivel, P.M. Anbarasan, V. Aroulmoji, V. Siva, L. Mohana, Sol–Gel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications. J. Sol-Gel Sci. Technol. 96, 416–422 (2020). https://doi.org/10.1007/s10971-020-05393-x

    Article  CAS  Google Scholar 

  37. V. Venkatachalam, A. Alsalme, A. Alswieleh, R. Jayavel, Shape controlled synthesis of rod-like Co3O4 nanostructures as high-performance electrodes for supercapacitor applications. J. Mater. Sci. : Mater. Electron. 29, 6059–6067 (2018). https://doi.org/10.1007/s10854-018-8580-8

    Article  CAS  Google Scholar 

  38. J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, J. Qian, E.J. Kim, Fabrication of porous Mn2O3 microsheet arrays on nickel foam as high–rate electrodes for supercapacitors. J. Alloys Compd. 717, 108–115 (2017). https://doi.org/10.1016/j.jallcom.2017.04.239

    Article  CAS  Google Scholar 

  39. S.A. Ansari, N. Parveen, H. Mahfoz Kotb, Adil Alshoaibi, Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochim. Acta. 355, 136783 (2020). https://doi.org/10.1016/j.electacta.2020.136783

    Article  CAS  Google Scholar 

  40. G.P. Ojha, B. Pant, A. Muthurasu, S.-H. Chae, S.-J. Park, T. Kim, H.-Y. Kim, Three-dimensionally assembled manganese oxide ultrathin nanowires: prospective electrode material for asymmetric supercapacitors. Energy. (2019). https://doi.org/10.1016/j.energy.2019.116066. ,188:116066

    Article  Google Scholar 

  41. S. Ouksaphea Pech, Electrochemical performances of electrospun carbon nanofibers, interconnected carbon nanofibers, and carbon-manganese oxide composite nanofibers. J. Alloys Compd. 781, 541–552 (2019). https://doi.org/10.1016/j.jallcom.2018.12.088

    Article  CAS  Google Scholar 

  42. Y. Jiang, C. He, S. Qiu, J. Zhang, X. Wang, Yingkui Yang, Scalable mechanochemical coupling of homogeneous Co3O4 nanocrystals onto in-situ exfoliated graphene sheets for asymmetric supercapacitors. Chem. Eng. J. 397, 125503 (2020). https://doi.org/10.1016/j.cej.2020.125503

    Article  CAS  Google Scholar 

  43. S. Ramesh, K. Karuppasamy, H.S. Kim, H.S. Kim, J.H. Kim, Hierarchical flowerlike 3D nanostructure of Co3O4@MnO2/N-doped graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Sci. Rep. 8, 16543 (2018). https://doi.org/10.1038/s41598-018-34905-7

    Article  CAS  Google Scholar 

  44. N. Imen Abidli, X.R. Souissi, Novoa, Corrosion inhibition of steel by prickly pear: extraction, characterisation and electrochemical studies. Rev. Roum Chim 65, 353–360 (2020). https://doi.org/10.33224/rrch.2020.65.4.04

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by SJCRG (2022–2023), St. Josehph’s College (autonomous), Tiruchirappalli-620002, India.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TRHJ – Conceptualization, Methodology, Investigation, Writing – original draft. PY – Investigation, Writing – review and editing. MS- Resources, Writing – review and editing. Clement LAJ – Writing – review and editing, Supervision.

Corresponding author

Correspondence to A. J. Clement Lourduraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Not applicable.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinity Rabecca, H.J., Priyajanani, Y., Manivannan, S. et al. Investigation of electrochemical behavior of Co3O4–Mn2O3/rGO nanocomposite for supercapacitor applications. J Mater Sci: Mater Electron 34, 1390 (2023). https://doi.org/10.1007/s10854-023-10810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10810-2

Navigation