Skip to main content
Log in

Influence of Mn-doping on di-/piezo-/ferro-electric properties of 0.49BiFeO3–0.20Pb(Mg1/3Nb2/3)O3–0.31PbTiO3 ceramic at morphotropic phase boundary

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Mn-doped 0.49BiFeO3–0.20Pb(Mg1/3Nb2/3)O3–0.31PbTiO3 (BF–PMN–PT) ceramics at morphotropic phase boundary (MPB) have been prepared by solid state reaction method. A systematic investigation of its microstructure and electrical properties was conducted. Powder X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) showed the formation of pure perovskite phase with homogeneous microstructure having average grain size of 2.48 µm at optimum temperature 920 °C. As compared to the pure BF–PMN–PT ceramic, enhanced dielectric constant value (~ 800) was observed for Mn-doped sample at room temperature. Polarization vs. electric field (P–E) hysteresis curves exhibits improved ferroelectric properties (Pr = 97.65 C/cm2 at coercive field Ec = − 17.08 kV/cm) after doping and showed a fatigue free nature over 104 switching cycles. The displacement voltage (D–V) curve showed a high value of the piezoelectric coefficient d33* = 786 pm/V after Mn doping. The magnetic hysteresis loop (M–H) curve showed a weak ferromagnetic nature with coercive field (Hc = 54.19 Oe) and remanent magnetization (Mr = 0.0087 emu/g) of the sample. Therefore, Mn-doped BF–PMN–PT ceramic can be a promising candidate for applications in the electronic ceramic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not publicly available due to unpublished work anywhere but are available from the corresponding author upon reasonable request.

References

  1. Y. Slimani, B. Unal, M.A. Almessier, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31(10), 7786–7797 (2020). https://doi.org/10.1007/s10854020-03317-7

    Article  CAS  Google Scholar 

  2. G. Tan, X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. 327, 87–90 (2013). https://doi.org/10.1016/j.jmmm.2012.09.047

    Article  CAS  Google Scholar 

  3. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  4. M.K.B. Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M.B. Salem, F.B. Azzouz, SiO2 nanoparticles additioneffectonmicrostructureand pinning propertiesinYBa2Cu3Oy. Ceram. Int. 40, 4953–4962 (2014). https://doi.org/10.1016/j.ceramint.2013.10.103

    Article  CAS  Google Scholar 

  5. A. Hamrita, Y. Slimani, M.K.B. Salem, E. Hannachi, L. Bessais, F.B. Azzouz, M.B. Salem, Superconducting properties of polycrystalline YBa2Cu3O7–d prepared by sintering of ball-milled precursor powder. Ceram. Int. 40, 1461–1470 (2014). https://doi.org/10.1016/j.ceramint.2013.07.030

    Article  CAS  Google Scholar 

  6. Y. Slimani, E. Hannachi, M.K.B. Salem, A. Hamrita, M.B. Salem, F.B. Azzouz, Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28, 3001–3010 (2015). https://doi.org/10.1007/s10948-015-3144-0

    Article  CAS  Google Scholar 

  7. E. Hannachi, Y. Slimani, M. Nawaz, R. Sivakumar, Z. Trabelsi, R. Vignesh, S. Akhtar, M.A. Almessiere, Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. J. Rar. Ear. (2023). https://doi.org/10.1016/j.jre.2022.03.020

    Article  Google Scholar 

  8. A. Manikandan, M. Yogasundari, K. Thanrasu, A. Dinesh, K.K. Raja, Y. Slimani, S.K. Jaganathan, R. Srinivasan, A. Baykal, Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@Fe3O4 nanocomposite. Phys. E 124, 114291 (2020). https://doi.org/10.1016/j.physe.2020.114291

    Article  CAS  Google Scholar 

  9. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides. Mater. Sci. Semicond. Process. 145, 106629 (2022). https://doi.org/10.1016/j.mssp.2022.106629

    Article  CAS  Google Scholar 

  10. M. Sowjanya, S.R. Mohammad Shariq, M.S. Pilli, T. Khan, A.A. Alharbi, D. Chaudhary, R. Pamu, A.M. Chowdharuy, Y.S. Fathy, Impact of Ar:O2 gas flow ratios on microstructure and optical characteristics of CeO2-doped ZnO thin films by magnetron sputtering. EPL 135, 67003 (2021). https://doi.org/10.1209/0295-5075/ac2d55

    Article  CAS  Google Scholar 

  11. S. Blessi, S. Anand, A. Manikandan, M.M.L. Sonia, V.M. Vinosel, Y. Slimani, M.A. Almessiere, A. Bayka, Influence of Ni substitution on opto-magnetic and electrochemical properties of CTAB-capped mesoporous SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 32, 7630–7646 (2021). https://doi.org/10.1007/s10854-021-05479-4

    Article  CAS  Google Scholar 

  12. M.A. Almessiere, Y. Slimani, H.S. El Sayed, A. Baykal, Morphology and magnetic traits of strontium nanohexaferrites: effects of manganese/yttrium co-substitution. J. Rar. Ear. 37(7), 732–740 (2019). https://doi.org/10.1016/j.jre.2018.09.014

    Article  CAS  Google Scholar 

  13. Y. Slimania, B. Unal, M.A. Almessiere, A.D. Korkmaz, S.E. Shirsath, G. Yasin, A.V. Trukhanov, A. Baykal, Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results Phys. 17, 103061 (2020). https://doi.org/10.1016/j.rinp.2020.103061

    Article  Google Scholar 

  14. G. Yasin, M.J. Anjum, M.U. Malik, M.A. Khan, W.Q. Khan, M. Arif, T. Mehtab, T.A. Nguyen, Y. Slimani, M. Tabish, D. Ali, Y. Zuo, Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets. Dia. Relat. Mater. 104, 107763 (2020). https://doi.org/10.1016/j.diamond.2020.107763

    Article  CAS  Google Scholar 

  15. W. Zhou, H. Deng, L. Yu, P. Yang, J. Chu, Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A = Pb, Ba; B = Ti) by ion substitution technique. Ceram. Int. 41, 13389–13392 (2015). https://doi.org/10.1016/j.ceramint.2015.07.127

    Article  CAS  Google Scholar 

  16. A.S. Bhalla, R. Guo, R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4, 3–26 (2000). https://doi.org/10.1007/s100190000062

    Article  CAS  Google Scholar 

  17. T. Badapanda, S. Sahoo, P. Nayak, Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. IOP Conf. Ser. Mater. Sci. Eng 178, 012032 (2017). https://doi.org/10.1088/1742-6596/755/1/011001

    Article  CAS  Google Scholar 

  18. D.A. Fernandez-Benavides, A.I. Gutierrez-Perez, A.M. Benitez-Castro, M.T. Ayala-Ayala, B. Moreno-Murguia, J. Muñoz-Saldaña, Comparative study of ferroelectric and piezoelectric properties of BNT-BKT-BT ceramics near the phase transition zone. Materials 11, 361 (2018). https://doi.org/10.3390/ma11030361

    Article  CAS  Google Scholar 

  19. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46(18), 28877–28886 (2020). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  CAS  Google Scholar 

  20. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercana, M. Yildiz, Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019). https://doi.org/10.1016/j.ceramint.2019.03.092

    Article  CAS  Google Scholar 

  21. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30(14), 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  CAS  Google Scholar 

  22. P. Xiang, X. Dong, H. Chen, Z. Zhang, J. Guo, Mechanical and electrical properties of small amount of oxides reinforced PZT ceramics. Ceram. Int. 29, 499–503 (2003). https://doi.org/10.1016/S0272-8842(02)00193-1

    Article  CAS  Google Scholar 

  23. A. Hussain, N. Sinha, S. Bhandari, H. Yadav, B. Kumar, Synthesis of 0.64Pb(Mg1/3 Nb2/3)O3–0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications. J. Asian Ceram. Soc. 4, 337–343 (2016). https://doi.org/10.1016/j.jascer.2016.06.004

    Article  Google Scholar 

  24. J.M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, G. Calvarin, Monoclinic structure of unpoled morphotropic high piezoelectric PMN–PT and PZN-PT compounds. Phys. Rev. B Condens. Matter Mater. Phys. 65, 641061–641064 (2002). https://doi.org/10.1103/PhysRevB.65.064106

    Article  CAS  Google Scholar 

  25. S. Wongsaenmai, R. Yimnirun, S. Ananta, R. Guo, A.S. Bhalla, Thermal expansion measurements in the relaxor ferroelectric PIN–PT system. Mater. Lett. 62, 352–356 (2008). https://doi.org/10.1016/j.matlet.2007.05.029

    Article  CAS  Google Scholar 

  26. A.A. Cavalheiro, C.R. Foschini, M.A. Zaghete, C.O. Paiva-santos, M. Cilense, J.A. Varela, E. Longo, Seeding of PMN powders made by the Pechini method. Ceram. Int. 27, 509–515 (2001). https://doi.org/10.1016/S0272-8842(00)00109-7

    Article  CAS  Google Scholar 

  27. Y. Guaaybess, M. Moussetad, A. El Mesbahi, S. Sayouri, M. Maanan, R. Adhiri, L. Hajji, O. Azaroual, Structural and dielectric characterisation of lanthanum-modified lead titanate Pb1-xLaxTi1-x/4O3 with x = 0.14. Phys. Chem. News 53, 34–38 (2010)

    CAS  Google Scholar 

  28. A. Hussain, B. Kumar, Intrinsic polarization and resistive leakage analyses in high performance piezo-/pyroelectric Ho-doped 0.64PMN-0.36PT binary ceramic. Adv. Pow. Tech. 29, 3124–3137 (2018). https://doi.org/10.1016/j.apt.2018.08.012

    Article  CAS  Google Scholar 

  29. A.K. Singh, D. Pandey, Evidence for MB and MC phases in the morphotropic phase boundary region of (1–x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: a Rietveld study. Phys. Rev. B 67, 064102 (2003). https://doi.org/10.1103/PhysRevB.67.064102

    Article  CAS  Google Scholar 

  30. A. Hussain, N. Sinha, S. Goel, A.J. Joseph, B. Kumar, Y3+ doped 0.64PMN-0.36PT ceramic for energy scavenging applications: excellent piezo-/ferro-response with the investigations of true-remanent polarization and resistive leakage. J. Alloys Compd. 790, 274–287 (2019). https://doi.org/10.1016/j.jallcom.2019.03.144

    Article  CAS  Google Scholar 

  31. Q. Lin, C. He, X. Long, Structural, electric and magnetic properties of BiFeO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. J. Electroceram. 36, 8–15 (2016). https://doi.org/10.1007/s10832-015-0009-7

    Article  CAS  Google Scholar 

  32. A.J. Joseph, N. Sinha, S. Goel, A. Hussain, B. Kumar, 0.37BF-0.31PMN-0.32PT: a superior piezo-/pyro-/ferro-electric ternary ceramic at MPB. Ceram. Int. 44, 18633–18640 (2018). https://doi.org/10.1016/j.ceramint.2018.07.089

    Article  CAS  Google Scholar 

  33. A. Kumar, A. Hussain, A.J. Joseph, S. Goel, R. Gupta, N.S. Singh, U. Singh, Synthesis of ternary 0.49BF-0.20PMN-0.31PT ceramic at morphotropic phase boundary for excellent die-/piezo-/ferro-/pyro- electric response. Appl. Phys. A. 128, 1–10 (2022). https://doi.org/10.1007/s00339-022-05800-w

    Article  CAS  Google Scholar 

  34. S. Hao, J. Yi, X. Chao, L. Wei, Z. Yang, Multiferroic properties in Mn-modified 0.7BiFeO3–0.3(Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 ceramics. Mater. Res. Bull. 84, 25–31 (2016). https://doi.org/10.1016/j.materresbull.2016.07.012

    Article  CAS  Google Scholar 

  35. D. Pang, X. Long, H. Tailor, A lead-reduced ferrolectric solid solution with high curie temperature: BiScO3–Pb(Zn1/3Nb2/3)O3–PbTiO3. Ceram. Int. 40, 12953–12959 (2014). https://doi.org/10.1016/j.ceramint.2014.04.156

    Article  CAS  Google Scholar 

  36. W. Hu, X. Tan, K. Rajan, BiFeO3–PbZrO3–PbTiO3 ternary system for high Curie temperature piezoceramics. J. Eur. Ceram. Soc. 31, 801–807 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.015

    Article  CAS  Google Scholar 

  37. A. Ahlawat, S. Satapathy, R.J. Chaudhary, M.K. Singh, P.K. Gupta, Observation of magnetoelectric coupling in BiFeO3-(Pb(Mg1/3Nb2/3)O3-PbTiO3) composites. Mater. Lett. 181, 123–126 (2016). https://doi.org/10.1016/j.matlet.2016.05.127

    Article  CAS  Google Scholar 

  38. Q. Guo, F. Li, F. Xia, X. Gao, P. Wang, H. Hao, H. Sun, H. Liu, S. Zhang, High performance sm-doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-based piezoceramics. ACS Appl. Mater. Interface 11, 43359–43367 (2019). https://doi.org/10.1021/acsami.9b15424

    Article  CAS  Google Scholar 

  39. Y. Lin, L. Zhang, J. Yu, Piezoelectric and ferroelectric property in Mn-doped 0.69BiFeO3–0.04Bi(Zn1/2Ti1/2)O3–0.27BaTiO3 lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 27, 1955–1965 (2016). https://doi.org/10.1007/s10854-015-3978-z

    Article  CAS  Google Scholar 

  40. F. Kang, L. Zhang, L. He, Q. Sun, Z. Wang, R. Kang, P. Mao, C. Zhu, J. Wang, Enhanced electric field induced strain in B-site. J. Alloys Compd. 864, 158917 (2021). https://doi.org/10.1016/j.jallcom.2021.158917

    Article  CAS  Google Scholar 

  41. A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jong, J.S. Lee, I.W. Kim, C.W. Ahn, Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34, 29–35 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.07.014

    Article  CAS  Google Scholar 

  42. N. Kim, W. Huebner, S.J. Jang, T.R. Shrout, Dielectric and piezoelectric properties of lanthanum-modified lead magnesium niobium-lead titanate. Ferroelectrics 93, 341–349 (1989). https://doi.org/10.1080/00150198908017366

    Article  Google Scholar 

  43. Z. Ren, Z. Ye, Effects of Mn-doping on PIN-PMN–PT ceramics with MPB composition. Ferroelectrics 464, 130–135 (2014). https://doi.org/10.1080/00150193.2014.893164

    Article  CAS  Google Scholar 

  44. Y. Wang, K. Cai, F. Jiang, J. Zhang, D. Guo, Mn doped hard type perovskite high-temperature BYPT–PZN ternary piezoelectric ceramics. Sens. Actuators A. Phys. 216, 335–341 (2014). https://doi.org/10.1016/j.sna.2014.05.009

    Article  CAS  Google Scholar 

  45. Z. Qiu, H. Hao, M. Cao, Z. Yao, H. Liu, Characteristics and structure of Mn-doped (0.6 − x)PMT–0.4PT–xPZ(x = 0.2,0.25) ternary system near morphotropic phase boundary. J. Mater. Sci. Mater. Electron. 29, 14261–14266 (2018). https://doi.org/10.1007/s10854-018-9559-1

    Article  CAS  Google Scholar 

  46. Z. Yao, Y. Liu, Z. Song, Z. Wang, H. Hao, M. Cao, Z. Yu, H. Liu, Structure and electrical properties of ternary BiFeO3-BaTiO3-PbTiO3 high-temperature piezoceramics. J. Adv. Ceram. 1(3), 227–231 (2012). https://doi.org/10.1007/s40145-012-0021-1

    Article  CAS  Google Scholar 

  47. K. Manjunatha, I.C. Sathish, S.P. Kubrin, A.T. Kozakov, T.A. Lastovina, A.V. Nikolskii, K.M. Srinivasamurthy, M. Pasha, V.J. Angadi, X-ray photoelectron spectroscopy and low temperature Mössbauer study of Ce3+ substituted MnFe2O4. J. Mat. Sci. Mater. Electr. 30, 10162–10171 (2019). https://doi.org/10.1007/s10854-019-01352-7

    Article  CAS  Google Scholar 

  48. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N.S. Reddy, V.J. Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mat. Sci. Mater. Electr. 30, 17202–17217 (2019). https://doi.org/10.1007/s10854-019-02068-4

    Article  CAS  Google Scholar 

  49. A. El-Denglawey, K. Manjunatha, E.V. Sekhar, B. Chethan, J. Zhuang, J. Angadi, Rapid response in recovery time, humidity sensing behavior and magnetic properties of rare earth(Dy & Ho) doped Mn–Zn ceramics. Ceram. Int. 47, 28614–28622 (2021). https://doi.org/10.1016/j.ceramint.2021.07.020

    Article  CAS  Google Scholar 

  50. K. Manjunathaa, V.J. Angadi, R.A.P. Ribeiro, E. Longo, M.C. Oliveira, M.R.D. Bomio, S.R. de Lázaro, S. Matteppanavar, S. Rayaprolg, P.D. Babug, M. Pashaa, Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles. J. Magn. Magnet. Mat. 502, 166595 (2020). https://doi.org/10.1016/j.jmmm.2020.166595

    Article  CAS  Google Scholar 

  51. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  52. C. Elissalde, J. Ravez, Ferroelectric ceramics: defects and dielectric relaxations. J. Mater. Chem. 11, 1957–1967 (2001). https://doi.org/10.1039/b010117f

    Article  CAS  Google Scholar 

  53. C. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC. Adv. 8, 17139–17150 (2018). https://doi.org/10.1039/c8ra00794b

    Article  CAS  Google Scholar 

  54. K. Manjunatha, I.S. Yahia, H.Y. Zahran, H. Algarni, B.J. Fernandes, P.-Z. Si, S. Tilak, K.P. Ramesh, S.O. Manjunatha, J. Angadi, B.R. Narapureddy, Effect of Sc3+ doping on the optical and magnetic properties of cobalt chromite nanoparticles. J. Superconductivity Novel Magn. 35, 3773–3785 (2022). https://doi.org/10.1007/s10948-022-06433-z

    Article  CAS  Google Scholar 

  55. K. Manjunatha, V.J. Angadi, M.C. Oliveira, S.R. de Lazaro, E. Longo, R.A.P. Ribeiro, S.O. Manjunatha, N.H. Ayachith, Towards shape oriented Bi-doped CoCr2O4 nanoparticles from theoretical and experimental perspectives: structural, morphological, optical, electrical and magnetic properties. J. Mater. Chem. C. 9, 6452–6469 (2021). https://doi.org/10.1039/D1TC00872B

    Article  CAS  Google Scholar 

  56. I.C. Sathisha, K. Manjunatha, V.J. Angadi, R.K. Reddy, Structural, microstructural, electrical, and magnetic properties of CuFe2-(x+y)EuxScyO4 (where x and y vary from 0 to 0.03) nanoparticles. J. Supercond. Nov. Magn. 33, 3963–3973 (2020). https://doi.org/10.1007/s10948-020-05667-z

    Article  CAS  Google Scholar 

  57. K. Manjunatha, V.J. Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, U.M. Pasha, Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 33, 1747–1757 (2020). https://doi.org/10.1007/s10948-019-05403-2

    Article  CAS  Google Scholar 

  58. A.J. Joseph, S. Goel, A. Hussain, B. Kumar, Kumar, ferro-/pyroelectric response of 0.57BF-0.31PMN-0.12PT ternary ceramic far away from morphotropic phase boundaries. Ceram. Int. 43, 16676–16683 (2017). https://doi.org/10.1016/j.ceramint.2017.09.058

    Article  CAS  Google Scholar 

  59. D. Damjanovic, R.E. Newnham, Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3, 190–208 (1992). https://doi.org/10.1177/1045389X9200300201

    Article  Google Scholar 

  60. D.J. Jones, S.E. Prasad, J.B. Wallace, Piezoelectric materials and theirs applications. Key Eng. Mater. 122–124, 71–144 (1996). https://doi.org/10.4028/www.scientific.net/KEM.122-124.71

    Article  Google Scholar 

  61. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  CAS  Google Scholar 

  62. G. Liu, M. Tang, X. Hou, B. Guo, J. Lv, J. Dong, Y. Wang, Q. Li, K. Yu, Y. Yan, L. Jin, Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem. Eng. J. 412, 127555 (2021). https://doi.org/10.1016/j.cej.2020.127555

    Article  CAS  Google Scholar 

  63. R. Cuppens, P.K. Larsen, G.A.C.M. Spierings, Ferroelectrics for non-volatile memories. Microelectr. Eng. 19, 245–252 (1992). https://doi.org/10.1016/0167-9317(92)90431-P

    Article  CAS  Google Scholar 

  64. G. Ray, N. Sinha, B. Singh, I. Bdikin, B. Kumar, Lead-free relaxor ferroelectric Na0.47K0.47Li0.06Nb0.94Sb0.06O3. Cryst. Growth Des. 15, 1852–1860 (2015). https://doi.org/10.1021/cg501891r

    Article  CAS  Google Scholar 

  65. M.S. Bozgeyik, R.K. Katiyar, R.S. Katiyar, Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution. J. Electroceram. 40, 247–256 (2018). https://doi.org/10.1007/s10832-018-0126-1

    Article  CAS  Google Scholar 

  66. V.J. Angadi, K. Manjunatha, S.P. Kubrin, A.T. Kozakov, A.G. Kochur, A.V. Nikolskii, I.D. Petrov, S.I. Shevtsova, N.H. Ayachit, Crystal structure, valence state of ions and magnetic properties of HoFeO3 and HoFe0.8Sc0.2O3 nanoparticles from X-ray diffraction, X-ray photoelectron, and Mossbauer spectroscopy data. J. Alloys Compd. 842, 155805 (2020). https://doi.org/10.1016/j.jallcom.2020.155805

    Article  CAS  Google Scholar 

  67. V.J. Angadi, K. Manjunatha, M. Akyol, A. Ekicibil, S. Matteppanavar, A.V. Pavlenko, S.P. Kubrin, Temperature-dependent dielectric and magnetic properties of scandium-substituted HoFeO3 nanoparticles. J. Super. Nov. Mag. 33, 3525–3534 (2020). https://doi.org/10.1007/s10948-020-05597-w

    Article  CAS  Google Scholar 

  68. V.J. Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magnet. Magn. Mater. 529, 167899 (2021). https://doi.org/10.1016/j.jmmm.2021.167899

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ajay Kumar thanks the University Grant Commission (UGC) for providing Senior Research Fellowship (SRF). Naorem Santakrus Singh and Abhilash J. Joseph are grateful to the Principal, Hindu College (University of Delhi) for infrastructural and other related facilities. Abid Hussain is thankful to Principal of ARSD College (University of Delhi) for his support and encouragement. Udaibir Singh is grateful to the Principle, Acharya Narendra Dev College (University of Delhi).

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AK: material synthesis, data collection, analysis, investigation, conceptualization, methodology and writing of the first draft of manuscript. AH: conceptualization, methodology, reviewing, and editing of the manuscript. AJJ: experimental advice, and comment on the first draft of manuscript. SG: characterization, and comments on the first draft of manuscript. NSS: supervision, editing, and finalization of manuscript. US: supervision, reviewing and validation. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Naorem Santakrus Singh or Udaibir Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Hussain, A., Joseph, A.J. et al. Influence of Mn-doping on di-/piezo-/ferro-electric properties of 0.49BiFeO3–0.20Pb(Mg1/3Nb2/3)O3–0.31PbTiO3 ceramic at morphotropic phase boundary. J Mater Sci: Mater Electron 34, 1371 (2023). https://doi.org/10.1007/s10854-023-10795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10795-y

Navigation