Skip to main content
Log in

Avail of the glass wool properties using the aperture-coupled technique to design a thermal smart jacket

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Regulation of temperature between the body and clothing makes it possible for the body to stay in the proper temperature range in different conditions. For this purpose, various materials and methods are used in the process of designing clothes. Glass wool is commonly used in jackets and other clothes as a thermal insulator. Designing an antenna based on the properties of glass wool provides an opportunity to produce smart thermoregulatory jackets. We propose an aperture-coupled antenna sensor that uses glass wool's thermal properties. First, the dielectric properties of glass wool were assessed between 35 °C to 41 °C, and there was a 0.05 change in relative permittivity per one-degree change in temperature. Second, the sensor was designed in a bilayer structure with glass wool as the top substrate and FR4 as the bottom substrate in the X frequency band. The results showed a 60MHz shift in the antenna's resonance frequency per one-degree increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and /or analyzed during the current study are available from the corresponding author on reasonable request.

The article has no financial conflict. Research does not involve human and /or animal participants.

References

  1. H. Lee, K. Baek, Multimedia Tools and Applications. (2021) https://doi.org/10.1007/s11042-021-11166-7

  2. K.M. Batoo, N.M. Badawi, S.F. Adil, J Mater Sci: Mater Electron. (2021). https://doi.org/10.1007/s10854-021-05746-4

    Article  Google Scholar 

  3. M. E. Gharbi, R. Fernández-García, S Ahyoud, I Gil, materials. (2020) https://doi.org/10.3390/ma13173781

  4. K. M. B. Jansen, EuroSimE (IEEE, Hannover, 2019) https://doi.org/10.1109/EuroSimE.2019.8724586

  5. K. Mori, C. Nagano, K. Fukuzawa, N. Hoshuyama, R. Tanaka, K. Nish, K. Hashimoto & S. Horie, Journal for Occupational Health. (2022) https://doi.org/10.1002/1348-9585.12323

  6. Y. Liu, H. Wang, W. Zhao, M. Zhang, H. Qin & Y. Xie, Sensors. (2018) https://doi.org/10.3390/s18020645

  7. J. Huang, T. Jiang, Z. Wang, S. Wu, Y. Chen, Microw Opt Technol Lett. (2017). https://doi.org/10.1002/mop.29771

    Article  Google Scholar 

  8. K. Sima, K. Mouckova, A. Hamacek, R. Souku, P. Komarkova & V. Glombikova. ISSE (IEEE, Demanovska Valley, 2020) https://doi.org/10.1109/ISSE49702.2020.9120978

  9. B.A. Kuzubasoglu, E. Sayar, C. Cochrane, V. Koncar, S.K. Bahadir, J Mater Sci: Mater Electron. (2021). https://doi.org/10.1007/s10854-020-05217-2

    Article  Google Scholar 

  10. Y. Su et al., Nanoscale Res Lett. (2020). https://doi.org/10.1186/s11671-020-03428-4

    Article  Google Scholar 

  11. I. Ibanez-Labiano, A. Alomainy, Materials. (2020). https://doi.org/10.3390/ma13061271

    Article  Google Scholar 

  12. I. Ibanez-Labiano, A. Alomainy. APSURSI (IEEE, Atlanta, 2019) https://doi.org/10.1109/APUSNCURSINRSM.2019.8888610

  13. X. Lin, B. Seet, ICST (IEEE, Auckland , 2015) https://doi.org/10.1109/ICSensT.2015.7438467

  14. G. Monti, L. Corchia, E. Paiano, G. D. Pascali, L, AP-RASC (IEEE, New Delhi, 2019) https://doi.org/10.23919/URSIAP-RASC.2019.8738181

  15. L. Dunne, T. Martin, R. Pailes-Friedman, C. Simon & C. Zeagler. NASA Wearable Technology CLUSTER 2013–2014 Report. 2014. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2 0140012422.pdf.

  16. Y. Yue & M. Solvang, Stone and Glass Wool (John Wiley & Sons, New York, 2020) pp.1103–1112 https://doi.org/10.1002/9781118801017.ch9.3

  17. P. Tao, D. J. McCafferty, Bioinspired Thermal Insulation and Storage Materials (NY:Wiley, Glasgow, 2018), pp.201–223 https://doi.org/10.1002/9783527687596.ch9

  18. D.K. Cheng, Field and Wave Electromagnetics, 2nd edn. (Addison Wesley Inc, Boston, 1989), pp.307–347

    Google Scholar 

  19. G. Gao, B. Hu, X. Tian, Q. Zhao, B. Zhang, Microw Opt Technol Lett. (2017). https://doi.org/10.1002/mop.30408

    Article  Google Scholar 

  20. V. Ramkumar, S. M. Basha, T. Suresh, A. Iyswariya, K. Jeevitha, V. P. kumar. European Journal of Molecular & Clinical Medicine. (2020)

  21. J. Zhang, S. Yan, X. Hu & G. A. E. Vandenbosch, EUCAP (IEEE, Paris, 2017) https://doi.org/10.23919/EuCAP.2017.7928293

  22. R. Del-Rio-Ruiz, J. Lopez-Garde & J. Legarda, Electronics. (2019) https://doi.org/10.3390/electronics8060714

  23. C. Hertleer, A. Tronquo, H. Rogier, L. Vallozzi, L. Langenhove, IEEE Antennas Wireless Propag Lett. (2007). https://doi.org/10.1109/LAWP.2007.903498

    Article  Google Scholar 

  24. S.D. Nivethika, B.S. Sreeja, E. Manikandan, S. Radha, Microw Opt Technol Lett. (2018). https://doi.org/10.1002/mop.31242

    Article  Google Scholar 

  25. A. Mersani, O. Lotfi, J. Ribero, Microw Opt Technol Lett. (2018). https://doi.org/10.1002/mop.31158

    Article  Google Scholar 

  26. A. Anbalagan, E.F. Sundarsingh, V.S. Ramalingam, Microw Opt Technol Lett. (2019). https://doi.org/10.1002/mop.32075

    Article  Google Scholar 

  27. P. F. Silva Jr, R. C. S. Freire, A. J. R. Serres, P. H. Silva da F and J. C. Silva, Microw Opt Technol Lett. (2016) https://doi.org/10.1002/mop.30150

Download references

Author information

Authors and Affiliations

Authors

Contributions

Investigation, Conceptualization, Ex-Experiments, Design of measurement setup, Methodology, Software, Writing, Formal analysis, Implementation, Resources and writing original draft was done by Sina Rahmani Charvadeh. Javad Ghalibafan contributed to the study review and editing as a supervisor. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Javad Ghalibafan.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charvadeh, S.R., Hosseinzadeh, M., Fallahi, M.S. et al. Avail of the glass wool properties using the aperture-coupled technique to design a thermal smart jacket. J Mater Sci: Mater Electron 34, 1367 (2023). https://doi.org/10.1007/s10854-023-10792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10792-1

Navigation