Skip to main content
Log in

Research on thermal conductivity and electrical insulation properties of epoxy composites with fluorescent grafted zero-dimensional Al2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the preparation of epoxy composites with enhanced thermal conduction and dielectric properties by grafting fluorescein isothiocyanate (FITC) onto zero-dimensional alumina (Al2O3) as filler, and the spacing and spatial distribution of filler particles were characterized by confocal laser scanning microscopy. Compared to pure epoxy resin (EP), the thermal conductivity and dielectric permittivity of epoxy composite can be significantly improved by adding filler. For example, an Al2O3-FITC/EP composite with a filling content of 3 wt% has thermal conductivity above 0.27 W·m−1·K−1, which is nearly 30% better than that of pure EP. At the same time, the composite has enhanced dielectric permittivity in the range of electric field frequencies tested at room temperature. This research will provide some practical information for analyzing the effect of spatial distribution of filler particles on the thermal conductivity and electrical insulation properties of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on rensonable request.

References

  1. C.Y. Li, Y. Yang, G.Q. Xu et al., Insulating materials for realising carbon neutrality: opportunities, remaining issues and challenges. High Volt. 7(4), 610–632 (2022)

    Article  Google Scholar 

  2. F.J. Niedernostheide, H.J. Schulze, T. Laska et al., Progress in IGBT development. IET Power Electron. 11(4), 646–653 (2018)

    Article  Google Scholar 

  3. X.Y. Zhang, M.Y. Wang, X. Li et al., A method for improving the thermal shock fatigue failure resistance of IGBT modules. IEEE T. Power Electr. 35(8), 8532–8539 (2019)

    Article  Google Scholar 

  4. U.M. Choi, F. Blaabjerg, K.B. Lee, Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE T. Power Electr. 30(5), 2517–2533 (2015)

    Article  Google Scholar 

  5. J.W. Zha, M.S. Zheng, B.H. Fan et al., Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano. Energy 89, 106438 (2021)

    Article  CAS  Google Scholar 

  6. L.L. Wang, C.X. Yang, X.Y. Wang et al., Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Compos. Part A Appl. S. 164, 107320 (2022)

    Article  Google Scholar 

  7. W.J. Sun, L. Zhang, Y.J. Liang et al., Mechanically robust epoxy with electrical breakdown healing capability for power equipment insulation via dynamic networks. React. Funct. Polym. 176, 105307 (2022)

    Article  CAS  Google Scholar 

  8. Z.D. Wang, T. Zhang, M.Y. Hao et al., Novel multifunctional melamine borate-boron nitride nanosheets/epoxy composites with enhanced thermal conductivity, flame retardancy and satisfying electrical insulation. Compos. Part A Appl. S. 169, 107495 (2023)

    Article  CAS  Google Scholar 

  9. M.H. Li, Z. Ali, X.Z. Wei et al., Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos. Part B Eng. 208, 108599 (2021)

    Article  CAS  Google Scholar 

  10. J.W. Ren, Q.H. Li, L. Yan et al., Enhanced thermal conductivity of epoxy composites by introducing graphene@ boron nitride nanosheets hybrid nanoparticles. Mater. Design 191, 108663 (2020)

    Article  CAS  Google Scholar 

  11. L.H. Zhao, L. Yan, C.M. Wei et al., Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. J. Phys. Chem. C 124(23), 12723–12733 (2020)

    Article  CAS  Google Scholar 

  12. R. Yan, F. Su, L. Zhang et al., Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Compos. Part A Appl. S. 125, 105496 (2019)

    Article  CAS  Google Scholar 

  13. Y. Li, C. Li, L. Zhang et al., Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane. J. Mater. Sci. Mater. Electron. 30, 8329–8338 (2019)

    Article  CAS  Google Scholar 

  14. S.L. Kang, X.T. Zhao, J. Guo et al., Thermal-assisted cold sintering study of Al2O3 ceramics: enabled with a soluble γ-Al2O3 intermediate phase. J. Eur. Ceram. Soc. 43(2), 478–485 (2023)

    Article  CAS  Google Scholar 

  15. X.Q. Bi, W.Q. Xue, Y.Z. Yang et al., Synergistic enhancement in permittivity and energy storage capacity of epoxy dielectrics via constructing continuous 3D BaTiO3 network collaborated with graphene oxide. Compos. Commun. 40, 101575 (2023)

    Article  Google Scholar 

  16. J.K. Han, G.L. Du, W.W. Gao et al., An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019)

    Article  Google Scholar 

  17. W.Y. Zhou, G.Z. Cao, M.X. Yuan et al., Core–shell engineering of conductive fillers toward enhanced dielectric properties: a universal polarization mechanism in polymer conductor composites. Adv. Mater. 35(2), 2207829 (2023)

    Article  CAS  Google Scholar 

  18. Z.D. Wang, M.M. Yang, Y.H. Cheng et al., Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A Appl. S. 118, 302–311 (2019)

    Article  CAS  Google Scholar 

  19. R.H. Zhang, X.T. Shi, L. Tang et al., Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chin. J. Polym. Sci. 38, 730–739 (2020)

    Article  CAS  Google Scholar 

  20. W. Lee, J. Wie, J. Kim, Enhancement of thermal conductivity of alumina/epoxy composite using poly (glycidyl methacrylate) grafting and crosslinking. Ceram. Int. 47(13), 18662–18668 (2021)

    Article  CAS  Google Scholar 

  21. H.B. Zhang, X. Zhang, K. Zheng et al., Preparation of poly glycidyl methacrylate (PGMA) chain-grafted boron nitride/epoxy composites and their thermal conductivity properties. RSC Adv. 11(36), 22343–22351 (2021)

    Article  CAS  Google Scholar 

  22. Y.M. Chen, X. Gao, J.L. Wang et al., Properties and application of polyimide-based composites by blending surface functionalized boron nitride nanoplates. J. Appl. Polym. (2015). https://doi.org/10.1002/app.41889

    Article  Google Scholar 

  23. J. Chen, X.Y. Huang, Y.K. Zhu et al., Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017)

    Article  Google Scholar 

  24. X.W. Xu, R.C. Hu, M.Y. Chen et al., 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 397, 125447 (2020)

    Article  CAS  Google Scholar 

  25. Y.C. Zhou, F. Liu, H. Wang, Novel organic–inorganic composites with high thermal conductivity for electronic packaging applications: a key issue review. Polym. Compos. 38(4), 803–813 (2017)

    Article  CAS  Google Scholar 

  26. L. Weng, H.B. Wang, X.R. Zhang et al., Preparation and properties of boron nitride/epoxy composites with high thermal conductivity and electrical insulation. J. Mater. Sci. Mater. Electron. 29, 14267–14276 (2018)

    Article  CAS  Google Scholar 

  27. H. Khan, A.S. Yerramilli, A. D’Oliveira et al., Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 98(6), 1255–1266 (2020)

    Article  CAS  Google Scholar 

  28. S. Gantayat, D. Rout, S.K. Swain, Carbon nanomaterial–reinforced epoxy composites: a review. Polym. Plast. Technol. Eng. 57(1), 1–16 (2018)

    Article  CAS  Google Scholar 

  29. S.H. Chen, R.Z. Xu, J.M. Liu et al., Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 31(10), 1804810 (2019)

    Article  Google Scholar 

  30. F. Wang, W.Y. Zhou, J.J. Zhou et al., Engineering of core@ double-shell Mo@ MoO3@ PS particles in PVDF composites towards improved dielectric performances. J. Polym. Res. 30(3), 112 (2023)

    Article  CAS  Google Scholar 

  31. T. Yao, W.Y. Zhou, G.Z. Cao et al., Engineering of core@ double-shell structured Zn@ ZnO@ PS particles in poly (vinylidene fluoride) composites towards significantly enhanced dielectric performances. J. Appl. Polym. 140(17), e53772 (2023)

    Article  CAS  Google Scholar 

  32. Z.D. Wang, G.D. Meng, L.L. Wang et al., Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 11(1), 2495 (2021)

    Article  CAS  Google Scholar 

  33. Y.X. Fu, Z.X. He, D.C. Mo et al., Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 66(1–2), 493–498 (2014)

    Article  CAS  Google Scholar 

  34. L.H. Zhao, Z.J. Chen, J.W. Ren et al., Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres. J. Coll. Interface Sci. 627, 205–214 (2022)

    Article  CAS  Google Scholar 

  35. H. Wang, L. Yang, Dielectric constant, dielectric loss, conductivity, capacitance and model analysis of electronic electroactive polymers. Polym. Test. 120, 107965 (2023)

    Article  CAS  Google Scholar 

  36. D. Fabiani, L. Simoni, Discussion on application of the Weibull distribution to electrical breakdown of insulating materials. IEEE Trans. Dielect. Electr. Insul. 12(1), 11–16 (2005)

    Article  Google Scholar 

  37. M.M. Adnan, E.G. Tveten, J. Glaum et al., Epoxy-based nanocomposites for high-voltage insulation: a review. Adv. Electron. Mater. 5(2), 1800505 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the funding from the State Key Laboratory of Electrical Insulation and Power Equipment Open Project (No. EIPE22210); Shaanxi Provincial Science and Technology Department Youth Foundation (No. 2022JQ-300); Shaanxi Province Industry-University-Research Collaborative Innovation Plan (No. 2023YFBT-45-02). Thanks for the Instrumental Analysis Center Xi’an University of Architecture and Technology and Ms. Zhixian He and Ms. Jiaoe Dang from this center.

Author information

Authors and Affiliations

Authors

Contributions

ZW and NZ conceived the idea; ML, XW, YZ and XC conducted the experiments and data analysis; ZW, ML and XW performed the literature research and drafted the manuscript; ZW and NZ performed the review and final editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhengdong Wang or Nannan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to effect the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Luo, M., Wang, X. et al. Research on thermal conductivity and electrical insulation properties of epoxy composites with fluorescent grafted zero-dimensional Al2O3. J Mater Sci: Mater Electron 34, 1385 (2023). https://doi.org/10.1007/s10854-023-10788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10788-x

Navigation