Skip to main content
Log in

Effect of free carbon content changed by divinylbenzene on the conductivity of SiCN ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SiCN ceramic is a candidate material for high-temperature sensors because of its stability and semiconductor characteristics at high temperatures. The free carbon content within the SiCN ceramics is a main factor that affects its conductivity. This study adjusted the free carbon content inside amorphous SiCN by adding divinylbenzene into the precursor. The electrical properties of SiCN ceramics with different free carbon contents were explored using ultraviolet fluorescence spectrum and temperature-resistant experiments. The results showed that with the increase of divinylbenzene from 0 to 20%, the conductivity of SiCN ceramics at room temperature increases from 2.77 × 10−9 to 3.66 × 10−4 S/cm, and the forbidden bandwidth decreases from 3.81 to 2.25 eV. At the same time, the increase of divinylbenzene content would promote the hybridization extent of free carbon from sp3 to sp2 and improve the degree of order. This work could pave the way for applying amorphous SiCN serving as temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets in this study are available from the corresponding author upon reasonable request.

References

  1. R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, F. Aldinger, A silicoboron carbonitride ceramic stable to 2000 °C. Nature 382, 796–798 (1996)

    Article  CAS  Google Scholar 

  2. H. Zhao, L. Chen, X. Luan, X. Zhang, J. Yun, T. Xu, Synthesis, pyrolysis of a novel liquid SiBCN ceramic precursor and its application in ceramic matrix composites. J. Eur. Ceram. Soc. 37(4), 1321–1329 (2017)

    Article  CAS  Google Scholar 

  3. Y. Iwamoto, W. Völger, E. Kroke, Crystallization behavior of amorphous silicon carbonitride ceramics derived from organometallic precursors. J. Am. Ceram. Soc. 84(10), 2170–2178 (2010)

    Article  Google Scholar 

  4. D.L. Poerschke, A. Braithwaite, D. Park, F. Lauten, Crystallization behavior of polymer-derived Si–O–C for ceramic matrix composite processing. Acta Mater. 147, 329–341 (2018)

    Article  CAS  Google Scholar 

  5. N. Janakiraman, F. Aldinger, Yielding, strain hardening, and creep under nanoindentation of precursor-derived Si–C–N ceramics. J. Am. Ceram. Soc. 93(3), 821–829 (2010)

    Article  CAS  Google Scholar 

  6. H.-Y. Ryu, Q. Wang, R. Raj, Ultrahigh-temperature semiconductors made from polymer-derived ceramics. J. Am. Ceram. Soc. 93, 1668 (2010)

    CAS  Google Scholar 

  7. Y. Wang, T. Jiang, L. Zhang, L. An, Electron transport in polymer-derived amorphous silicon oxycarbonitride ceramics. J. Am. Ceram. Soc. 92(7), 1603–1606 (2009)

    Article  CAS  Google Scholar 

  8. Y. Yu, W. Xu, J. Xu, J. Zhu, M. Cong, Conductivity of SiCNO–BN composite ceramics and their application in wireless passive temperature sensor. Ceram. Int. 47(10), 14490–14497 (2021)

    Article  CAS  Google Scholar 

  9. L.A. Liew, R.A. Saravanan, V.M. Bright, Processing and characterization of silicon carbon-nitride ceramics application of electrical properties towards MEMS thermal actuators. Sens. Actuators Phys. 103(1–2), 171–181 (2003)

    Article  CAS  Google Scholar 

  10. R. Zhao, G. Shao, Y. Cao, L. An, C. Xu, Temperature sensor made of polymer-derived ceramics for high-temperature applications. Sens. Actuators A: Phys. 219, 58–64 (2014)

    Article  CAS  Google Scholar 

  11. X. Ren, S. Ebadi, H. Cheng, Y. Chen, G. Xun, Wireless resonant frequency detection of SiCN ceramic resonator for sensor applications, IEEE international symposium on antennas & propagation (2011) 1856–1859

  12. P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805–1837 (2010)

    CAS  Google Scholar 

  13. R. Riedel, G. Mera, R. Hauser, Silicon based polymer derived ceramics synthesis properties and applications a review. J. Ceram. Soc. Jpn. 114(1330), 425–444 (2006)

  14. L. Frediani, M.W. Usrey, O.A. Watts, Technical opportunities for high temperature smart P3 sensors and electronics for distributed engine control. 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)

  15. A. Von Moll, A.R. Behbahani, G.C. Fralick, J.D. Wrbanek, G.W. Hunter, A review of exhaust gas temperature sensing techniques for modern turbine engine controls. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2014)

  16. F. Dalcanale, J. Grossenbacher, G. Blugan, M.R. Gullo, A. Lauria, J. Brugger, H. Tevaearai, T. Graule, M. Niederberger, J. Kuebler, Influence of carbon enrichment on electrical conductivity and processing of polycarbosilane derived ceramic for MEMS applications. J. Eur. Ceram. Soc. 34(15), 3559–3570 (2014)

    Article  CAS  Google Scholar 

  17. Y. Chen, X. Yang, Y. Cao, L. An, Effect of pyrolysis temperature on the electric conductivity of polymer-derived silicoboron carbonitride. J. Eur. Ceram. Soc. 34(10), 2163–2167 (2014)

    Article  CAS  Google Scholar 

  18. S. Trassl, M. Puchinger et al., Electrical properties of amorphous SiCxNyHz-ceramics derived from polyvinylsilazane. J. Eur. Ceram. Soc. 23(5), 781–789 (2003)

    Article  CAS  Google Scholar 

  19. Y. Chen, F. Yang, L. An, On electric conduction of amorphous silicon carbonitride derived from a polymeric precursor. Appl. Phys. Lett. 102(23), 231902 (2013)

    Article  Google Scholar 

  20. C. Drechsel, H. Peterlik, C. Gierl-Mayer, M. Stöger-Pollach, T. Konegger, Influence of DVB as linker molecule on the micropore formation in polymer-derived SiCN ceramics. J. Eur. Ceram. Soc. 41(6), 3292–3302 (2021)

    Article  CAS  Google Scholar 

  21. L. Hagelüken, P.V.W. Sasikumar, H.-Y. Lee, D. Di Stadio, Y. Chandorkar, M. Rottmar, K. Maniura-Weber, G. Blugan, J. Brugger, Multiscale 2D/3D microshaping and property tuning of polymer-derived SiCN ceramics. J. Eur. Ceram. Soc. 42(5), 1963–1970 (2022)

    Article  Google Scholar 

  22. G. Liu, J. Kaspar, L.M. Reinold, M. Graczyk-Zajac, R. Riedel, Electrochemical performance of DVB-modified SiOC and SiCN polymer-derived negative electrodes for lithium-ion batteries. Electrochim. Acta. 106, 101–108 (2013)

    Article  CAS  Google Scholar 

  23. B. Ma, Y. Cao, Y. Gao, Y. Wang, Fabrication of a thin double-layer thermistor based on DVB-modified polymer-derived SiCN ceramics. J. Alloys Compd. 732, 491–497 (2018)

    Article  CAS  Google Scholar 

  24. K. Liu, W. Peng, D. Han, Y. Liang, B. Fan, H. Lu, H. Wang, H. Xu, R. Zhang, G. Shao, Enhanced piezoresistivity of polymer-derived SiCN ceramics by regulating divinylbenzene-induced free carbon. Ceram. Int. 49, 2296 (2022)

    Article  Google Scholar 

  25. G.D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan, C. Pantano, Chemical durability of silicon oxycarbide glasses. J. Am. Ceram. Soc. 85, 1529–1536 (2002)

    Article  Google Scholar 

  26. Y. Chen, X. Yang, Y. Cao, Z. Gan, L. An, Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics. Acta Mater. 72, 22–31 (2014)

    Article  CAS  Google Scholar 

  27. B. Ma, Y. Wang, K. Wang, X. Li, J. Liu, L. An, Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride. Acta Mater. 89, 215–224 (2015)

    Article  CAS  Google Scholar 

  28. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. A Math. Phys. Eng. Sci. 362(1824), 2477–2512 (2004)

    Article  CAS  Google Scholar 

  29. S. Chen, J. Li, H. Shi, X. Chen, G. Liu, S. Meng, J. Lu, Lightweight and geometrically complex ceramics derived from 4D printed shape memory precursor with reconfigurability and programmability for sensing and actuation applications. Chem. Eng. J. 455, 140655 (2023)

    Article  CAS  Google Scholar 

  30. I. Štubňa, V. Trnovcová, L. Vozár, Å. Csáki, Uncertainty of the measurement of DC Conductivity of eramics at elevated temperatures. J. Electr. Eng. 66(1), 34–39 (2015)

    Google Scholar 

  31. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  32. P. Kubelka, F. Munk, An article on optics of paint layers. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (NSFC, No. 12090034, No. 11672087).

Funding

This work was supported by the National Natural Science Foundation of China (NSFC 12090034 and 11672087).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JL; methodology, HS and GZ; formal analysis, HS and GZ; investigation, HS; data curation, HS and GZ; writing and original draft preparation, HS; writing, reviewing, and editing of the manuscript, JL; supervision, JL; project administration, SM; funding acquisition, JL and SM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jinping Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Li, J., Zhang, G. et al. Effect of free carbon content changed by divinylbenzene on the conductivity of SiCN ceramic. J Mater Sci: Mater Electron 34, 1402 (2023). https://doi.org/10.1007/s10854-023-10770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10770-7

Navigation