Skip to main content
Log in

Electrical property and temperature sensitivity of NiFe2−xSb x O4 (x ≤ 0.02) ceramics for negative temperature coefficient thermistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiFe2−xSb x O4 (x = 0.0, 0.008, 0.01, 0.015, 0.02) ceramics were prepared by a wet chemical process. The related ceramics were obtained by powders compacting and sintering by conventional ceramic processing. The phase component, cationic valence and electrical properties of the prepared ceramics were investigated. The investigation results indicate that NiFe2−xSb x O4 ceramics have a cubic spinel structure and display a typical characteristic of negative temperature coefficient (NTC) of resistivity. The room temperature resistivity of NiFe2−xSb x O4 ceramics can be adjusted from 75597 to 2714 Ω cm by changing the contents of Sb, and the ceramics hold high thermal sensitivity with NTC material constants between 3612 and 5408 K. The investigation of impedance spectra measured at different temperatures revealed that the grain effect and grain-boundary effect contribute simultaneously to the electrical conductivity and NTC effect. Conduction mechanism of NiFe2−xSb x O4 NTC thermistors are proposed to follow the polaron hopping model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Park, S.J. Yun, J. Mater. Sci. - Mater. Electron. 15, 359–362 (2004)

    Article  Google Scholar 

  2. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  Google Scholar 

  3. R. Jadhav, D. Kulkarni, V. Puri, J. Mater. Sci. - Mater. Electron. 21, 503–508 (2010)

    Article  Google Scholar 

  4. A. Feltz, W. PoElzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)

    Article  Google Scholar 

  5. A. Šutka, R. Pärna, T. Käämbre, V. Kisand, Phys. B 456, 232–236 (2015)

    Article  Google Scholar 

  6. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Article  Google Scholar 

  7. A. Franco, M.S. Silva, J. Appl. Phys. 109, 07B505 (2011)

    Article  Google Scholar 

  8. D.A. Kukuruznyak, J.D. Moyer, F.S. Ohuchi, J. Am. Ceram. Soc. 89, 189–192 (2006)

    Article  Google Scholar 

  9. F. Cheng, J. Wang, H. Zhang, A. Chang, W. Kong, B. Zhang, L. Chen, J. Mater. Sci. - Mater. Electron. 26, 1374–1380 (2015)

    Article  Google Scholar 

  10. C.H. Zhao, B.Y. Wang, P.H. Yang, L. Winnubst, C.S. Chen, J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  Google Scholar 

  11. C. Zhao, Y. Zhao, J. Mater. Sci. - Mater. Electron. 23, 1788–1792 (2012)

    Article  Google Scholar 

  12. X. Sun, H. Zhang, Y. Liu, J. Guo, Z. Li, J. Adv. Ceram. 5, 329–336 (2016)

    Article  Google Scholar 

  13. B. Yang, H. Zhang, J. Guo, Y. Liu, Z. Li, Front. Mater. Sci. 10, 413–421 (2016)

    Article  Google Scholar 

  14. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 82, 2284–2286 (2003)

    Article  Google Scholar 

  15. G. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, J. Mater. Sci. - Mater. Electron. 28, 363–370 (2017)

    Article  Google Scholar 

  16. Z. Guo, J. Shao, H. Lin, M. Jiang, S. Chen, Z. Li, J. Mater. Sci. - Mater. El. 28, 11871–11877 (2017)

    Article  Google Scholar 

  17. P. Kumar, G. Rana, G. Dixit, A. Kumar, V. Sharma, R. Goyal, K. Sachdev, S. Annapoorni, K. Asokan, J. Alloy. Compd. 685, 492–497 (2016)

    Article  Google Scholar 

  18. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Phys. Rev. B 63, 184108 (2001)

    Article  Google Scholar 

  19. B. Senthilkumara, R.K. Selvana, P. Vinothbabub, I. Perelshtein, A. Gedanken, Mater. Chem. Phys. 130, 285–292 (2011)

    Article  Google Scholar 

  20. M.N. Asgiq, M.F. Ehsan, M.J. Iqba, I.H. Gul, J. Alloy. Compd. 509, 5119–5126 (2011)

    Article  Google Scholar 

  21. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, J. Magn. Magn. Mater. 327, 159–166 (2013)

    Article  Google Scholar 

  22. X.X. Xie, J.H. Wang, L. Chen, Z.H. Hu, S.Y. Yan, A.M. Chang, J. Mater. Sci. - Mater. Electron. 28, 190–196 (2017)

    Article  Google Scholar 

  23. C.S.L.N. Sridhar, C.S. Lakshmi, G. Govindraj, J. Phys. Chem. Solids 92, 70–84 (2016)

    Article  Google Scholar 

  24. E. Pervaiz, I.H. Gul, A. Habib, J. Supercond. Nov. Magn. 27, 881–890 (2014)

    Article  Google Scholar 

  25. J.H. Liu, L. Wang, F.S. Li, J. Mater. Sci. 40, 2573–2575 (2005)

    Article  Google Scholar 

  26. R.P. Gupta, S.K. Sen, Phys. Rev. B 10, 71–77 (1974)

    Article  Google Scholar 

  27. R.P. Gupta, S.K. Sen, Phys. Rev. B 12, 15–19 (1975)

    Article  Google Scholar 

  28. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Surf. Interface Anal. 36, 1564–1574 (2004)

    Article  Google Scholar 

  29. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  Google Scholar 

  30. S. Suresh, S. Rangarajan, S. Bera, R. Krishnan, S. Amirthapandian, M. Sivakumar, S. Velmurugan, Thin Solid Films. 645, 77–86 (2018)

    Article  Google Scholar 

  31. R.S. Yadava, I. Kuřitkaa, J. Vilcakovaa, J. Havlicab, J. Masilkob, L. Kalinab, J. Tkaczb, V. Enevb, M. Hajdúchováb, J. Phys. Chem. Solids 107, 150–161 (2017)

    Article  Google Scholar 

  32. W.T. Hao, H. Wu, P.P. Xu, Y.J. Shi, S. Yang, M.W. Wang, L. Sun, E.S. Cao, Y.J. Zhang, Ceram. Int. 43, 3631–3638 (2017)

    Article  Google Scholar 

  33. M.N. Ashiqa, M.F. Ehsana, M.J. Iqbalb, I.H. Gulc, J. Alloy. Compd. 509, 5119–5126 (2011)

    Article  Google Scholar 

  34. K.M. Batto, Alimuddin, Phys. B 406, 382–391 (2011)

    Article  Google Scholar 

  35. M. Nadeem, A. Mushtaq, J. Appl. Phys. 106, 073713 (2009)

    Article  Google Scholar 

  36. R.K. Panda, R. Muduli, G. Jayarao, D. Sanyal, D. Behera, J. Alloy. Compd. 669, 19–28 (2016)

    Article  Google Scholar 

  37. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, J. Appl. Phys. 110, 064104 (2011)

    Article  Google Scholar 

  38. J. Wu, Z.M. Huang, W. Zhou, C. Ouyang, Y. Hou, Y.Q. Gao, R. Chen, J.H. Chu, J. Appl. Phys. 115, 113703 (2014)

    Article  Google Scholar 

  39. J. Guo, H. Zhang, Z. He, S. Li, Z. Li, J. Mater. Sci. - Mater. El. 29, 2491–2499 (2018)

    Article  Google Scholar 

  40. M.A.L. Nobre, S. Lanfredi, Appl. Phys. Lett. 81, 451–453 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Natural Science Foundation of China (No. 51767021) and the Jiangxi Yunjia High Tech Co., Ltd. (No. 738010128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Li, Z., Li, P. et al. Electrical property and temperature sensitivity of NiFe2−xSb x O4 (x ≤ 0.02) ceramics for negative temperature coefficient thermistors. J Mater Sci: Mater Electron 29, 11637–11645 (2018). https://doi.org/10.1007/s10854-018-9261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9261-3

Navigation