Skip to main content
Log in

Structural, optical, and electrical characterization of laser ablated CdO1-xSnx nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Laser ablation technique has be used to synthesize cadmium oxide and tin CdO(1-x)Snx nanocomposites. The XRD characteristics of the sample revealed the crystalline phase and cubic structure of the CdO samples, whereas the CdO: Sn nanocomposites with the doping ratios of (5, 10, and 15%) showed good crystallinity with cubic and tendency to orthorhombic structures. The crystallite size found to be slightly increasing with the doping ratio and the obtained values range from 26 to 30 nm. The average diameter is also increasing with the doping and ranges from less than 80 nm to about 90 nm. AFM analysis showed that increasing Sn-doping ratio causes a drop of the average roughness to a minimum value of about 0.5 nm and then increases with the doping to nearly similar case of undoped CdO sample. Optical measurements of absorption, transmission, and reflection spectra exhibit plasmonic effect and show significant effect of Sn-doping on the level and peak position of all the spectra. The energy band-gap value is enhanced with the doping and reach its maximum value of 2.722 eV at 10% doping ratio. On the other hand, the electron concentration, carrier mobility, and resistivity showed significant enhancement with the doping ratio. The dielectric properties have also shown remarkable variations with noticeable shifts in the peak values toward the higher wavelength range. The characteristic bands of both pure CdO and Sn-doped nanocomposites were confirmed by Fourier transform infrared spectroscopy (FTIR). All analyses suggest that the Sn-doping ratio of 10% is the optimum ratio for enhanced effects of these nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data will be available from the corresponding author upon reasonable request.

References

  1. D. Ginley, C. Bright, Transparent conducting oxides. MRS Bull. 25(8), 15–18 (2000). https://doi.org/10.1557/mrs2000.256

    Article  CAS  Google Scholar 

  2. H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.-W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. 7, 1087–1110 (2019). https://doi.org/10.1039/C8TC04423F

    Article  CAS  Google Scholar 

  3. D.Y. Kang, B.-H. Kim, T.H. Lee, J.W. Shim, S. Kim, H.-J. Sung, K.J. Chang, T.G. Kim, Dopant-tunable ultrathin transparent conductive oxides for efficient energy conversion devices. Nano-micro Lett. 13, 211 (2021). https://doi.org/10.1007/s40820-021-00735-y

    Article  CAS  Google Scholar 

  4. B. Raj, A. Raman, Nanoscale semiconductors: materials, devices and circuits. Taylor & Francis Group (2022). https://doi.org/10.1201/9781003311379

    Article  Google Scholar 

  5. Y. Hong et al., Size dependent optical properties of LaB6 nanoparticles enhanced by localized surface plasmon resonance. J. Rare Earths 31, 1096–1101 (2013). https://doi.org/10.1016/s1002-0721(12)60410-4

    Article  CAS  Google Scholar 

  6. O. Bitton, S. Gupta, G. Haran, Quantum dot plasmonics: from weak to strong coupling. Nanophotonics. 8, 559–575 (2019). https://doi.org/10.1515/nanoph-2018-0218

    Article  CAS  Google Scholar 

  7. B. Raj, A. Raman, Nanoscale Semiconductors, 1st edn. (CRC Press, Boca Raton, 2022)

    Book  Google Scholar 

  8. P. Velusamy et al., Incorporation of Ti3+ metal ions in chemically spray deposited CdO thin films for optoelectronic and chem-resistive based formaldehyde gas sensor applications. New J. Chem. 46, 22469–22485 (2022). https://doi.org/10.1039/D2NJ02925A

    Article  CAS  Google Scholar 

  9. A. Kathalingam, K. Kesavan, A.U.H.S. Rana, J. Jeon, H.S. Kim, Analysis of Sn concentration effect on morphological, optical, electrical and photonic properties of spray-coated Sn-doped CdO thin films. Coatings 8(5), 167 (2018). https://doi.org/10.3390/coatings8050167

    Article  CAS  Google Scholar 

  10. M. Thirumoorthi, J.T.J. Prakash, A study of Tin doping effects on physical properties of CdO thin films prepared by sol–gel spin coating method. J. Asian Ceramic Soc. 4, 39–45 (2016). https://doi.org/10.1016/j.jascer.2015.11.001

    Article  Google Scholar 

  11. K. Sirohi, S. Kumar, V. Singh et al., Synthesis and characterization of CdO–SnO2 nanocomposites prepared by hydrothermal method. Acta Metall. Sin. 31, 254–262 (2018). https://doi.org/10.1007/s40195-017-0659-3

    Article  CAS  Google Scholar 

  12. B. Ates, S. Koytepe, A. Ulu, C. Gurses, V.K. Thakur, Chemistry, structures, and advanced applications of nanocomposites from Bio-renewable resources. Chem. Rev. 120, 9304–9362 (2020). https://doi.org/10.1021/acs.chemrev.9b00553

    Article  CAS  Google Scholar 

  13. A.A. Ziabari, F.E. Ghodsi, Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films. J. Alloys Compd. 509, 8748–8755 (2011). https://doi.org/10.1016/j.jallcom.2011.06.050

    Article  CAS  Google Scholar 

  14. R.M. Mohamed, Z.I. Zaki, Degradation of Imazapyr herbicide using visible light-active CdO–TiO2 heterojunction photocatalyst. J. Environ. Chem. Eng. 9, 104732 (2021). https://doi.org/10.1016/j.jece.2020.104732

    Article  CAS  Google Scholar 

  15. A.S. Kamble, N.S. Harale, P.S. Patil, B.B. Sinha, K.C. Chung, CdO and CdO-ZnO composite nanowires: Synthesis, characterization, and ethanol gas response, 2012 1st Int. Symp. Phys. Tech/ Sens. (ISPTS-1) (2012). https://doi.org/10.1109/ispts.2012.6260948

    Article  Google Scholar 

  16. S.J. Helen, S. Devadason, T. Mahalingam, Improved physical properties of spray pyrolysed Al:CdO nanocrystalline thin films. J. Mater. Sci.: Mater. Electron. 27, 4426–4432 (2016). https://doi.org/10.1007/s10854-016-4313-z

    Article  CAS  Google Scholar 

  17. M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, D. Velauthapillai, Structural and optical properties of Ga-doped CdO nanocrystalline thin films. Superlattices Microstruct. 86, 559–563 (2015). https://doi.org/10.1016/j.spmi.2015.08.020

    Article  CAS  Google Scholar 

  18. K. Usharani, A.R. Balu, V.S. Nagarethinam, M. Suganya, Characteristic analysis on the physical properties of nanostructured Mg-doped CdO thin films—doping concentration effect. Prog Nat Sci.: Mater. Int. 25, 251–257 (2015). https://doi.org/10.1016/j.pnsc.2015.06.003

    Article  CAS  Google Scholar 

  19. K. Usharani, N. Manjula, A. Balu, V. Nagarethinam, Characteristic analysis of nanostructured Cl-doped CdO thin films– doping effect. Mater. Res. Innov. (2016). https://doi.org/10.1179/1433075x15y.0000000045

    Article  Google Scholar 

  20. G.T. Chavan et al., Chemical synthesis of Cd1−x−yZnxCuySzSe1−z composite thin films for photoelectrochemical solar cell. Appl. Surf. Sci. 574, 151581 (2022). https://doi.org/10.1016/j.apsusc.2021.151581

    Article  CAS  Google Scholar 

  21. R.O. Yathisha, Y. Arthoba Nayaka, P. Manjunatha, M.M. Vinay, H.T. Purushothama, Doping, structural, optical, and electrical properties of Ni2 doped CdO nanoparticles prepared by microwave combustion route. Microchem. J. (2019). https://doi.org/10.1016/j.microc.2018.10.060

    Article  Google Scholar 

  22. S. Leelavati, P. Bhardwaj, Transition Metal (Mn, Ni) Co-doped CdO nanoparticles: demonstration of structural, optical, and magnetic properties. J. Supercond Nov. Magn. 35, 1575–1585 (2022). https://doi.org/10.1007/s10948-022-06272-y

    Article  CAS  Google Scholar 

  23. M. Anitha, N. Anitha, K. Saravanakumar, I. Kulandaisamy, L. Amalraj, Effect of Zn doping on structural, morphological, optical, and electrical properties of nebulized spray-deposited CdO thin films. Appl. Phys. A: Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1993-7

    Article  Google Scholar 

  24. C. Uthiram, N. Punithavelan, Efficient magnetic and antibacterial properties of CdO/ZnO nanocomposites prepared via facile hydrothermal method. J. King Saud Uni.-Science. 34, 102162 (2022). https://doi.org/10.1016/j.jksus.2022.102162

    Article  Google Scholar 

  25. A. Badawi et al., Tailoring the optical properties of CdO nanostructures via barium doping for optical windows applications. Phys. Lett. A 411, 127553 (2021). https://doi.org/10.1016/j.physleta.2021.127553

    Article  CAS  Google Scholar 

  26. A. Akouibaa, R. Masrour, A. Jabar, G. Kadim, M. Benhamou, A. Derouiche, Numerical investigation of electronic, dielectric, and optical properties of CdO, SnO2/CdO and SnO2/CdO/PVP nanocomposites. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-03305-z

    Article  Google Scholar 

  27. S. Kose, F. Atay, V. Bilgin, I. Akyuz, Some physical properties of CdO thin films used as window material in photovoltaic solar cells. Int. J. Green Energy 1, 353–364 (2004). https://doi.org/10.1081/ge-200033655

    Article  CAS  Google Scholar 

  28. C. Ristoscu, I.N. Mihailescu, Thin films and nanoparticles by pulsed laser deposition: wetting, adherence, and nanostructuring. Pulsed Laser Ablation. (2018). https://doi.org/10.1201/9781315185231-7

    Article  Google Scholar 

  29. M. Yan, M. Lane, C.R. Kannewurf, R.P.H. Chang, Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 78, 2342–2344 (2001). https://doi.org/10.1063/1.1365410

    Article  CAS  Google Scholar 

  30. E. Li, H. Zhuo, H. He, N. Wang, T. Liu, Structural, optical, and electrical properties of low-concentration Ga-doped CdO thin films by pulsed laser deposition. J. Mater. Sci. 51, 7179–7185 (2016). https://doi.org/10.1007/s10853-016-9998-0

    Article  CAS  Google Scholar 

  31. K. Karthik et al., Multifunctional properties of CdO nanostructures Synthesized through microwave assisted hydrothermal method. Mater. Res. Innov. (2018). https://doi.org/10.1080/14328917.2018.1475443

    Article  Google Scholar 

  32. C. Uthiram, N. Punithavelan, Efficient magnetic and antibacterial properties of CdO/ZnO nanocomposites prepared via facile hydrothermal method. J King Saud Univ. Sci. 34(6), 102162 (2022). https://doi.org/10.1016/j.jksus.2022.102162

    Article  Google Scholar 

  33. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Preparation and characterization of highly conducting and transparent Al doped CdO thin films by pulsed laser deposition. Curr. Appl. Phys. 9, 673–677 (2009). https://doi.org/10.1016/j.cap.2008.06.004

    Article  Google Scholar 

  34. T.A. Gessert, J. Burst, X. Li, M. Scott, T.J. Coutts, Advantages of transparent conducting oxide thin films with controlled permittivity for thin film photovoltaic solar cells. Thin Solid Films 519, 7146–7148 (2011). https://doi.org/10.1016/j.tsf.2011.01.143

    Article  CAS  Google Scholar 

  35. V. Grivickas, J. Linnros, Carrier lifetime: free carrier absorption, photoconductivity, and photoluminescence. Charact Mater. (2012). https://doi.org/10.1002/0471266965.com037.pub2

    Article  Google Scholar 

  36. A.M. Elkorashy, Optical constants of tin selenide single crystals in the transparency region. J. de Physique III(1), 1169–1179 (1991). https://doi.org/10.1051/jp3:1991178

    Article  Google Scholar 

  37. D.A. Cristaldi, A. Gulino et al., Structural, electronic, and electrical properties of an undoped n-type CdO thin film with high electron concentration. J. Phys. Chem. C. 118, 15019–15026 (2014). https://doi.org/10.1021/jp5040085

    Article  CAS  Google Scholar 

  38. F.P. Koffyberg, Electron concentration and mobility in semimetallic CdO. Can. J. Phys. 49, 435–440 (1971). https://doi.org/10.1139/p71-055

    Article  CAS  Google Scholar 

  39. P. Umadevi, N. Prithivikumaran, Electrical parameters of metal doped n-CdO/p-Si heterojunction diodes. Physica B 501, 123–128 (2016). https://doi.org/10.1016/j.physb.2016.08.002

    Article  CAS  Google Scholar 

  40. S. Maiti, K. Maiti, M.T. Curnan, K. Kim, K.-J. Noh, J.W. Han, Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy Environ. Sci. 14, 3717–3756 (2021). https://doi.org/10.1039/D1EE00074H

    Article  CAS  Google Scholar 

  41. K. Usharani, A.R. Balu, Structural, optical, and electrical properties of Zn-doped CdO thin films fabricated by a simplified spray pyrolysis technique. Acta Metall. Sin. 28, 64–71 (2015). https://doi.org/10.1007/s40195-014-0168-6

    Article  CAS  Google Scholar 

  42. M. Anitha, K. Saravanakumar, N. Anitha, L. Amalraj, Influence of fluorine doped CdO thin films by an simplified spray pyrolysis technique using nebulizer. Opt. Quant. Elect. (2019). https://doi.org/10.1007/s11082-019-1901-1

    Article  Google Scholar 

  43. A. Taylor, The study of carbon by the Debye-Scherrer method. J. Sci. Instrum. 18, 90–94 (1941). https://doi.org/10.1088/0950-7671/18/5/306

    Article  CAS  Google Scholar 

  44. S. Fatimah, R. Ragadhita, D.F. Al Husaeni, A.B.D. Nandiyanto, How to calculate crystallite size from X-ray diffraction (XRD) using Scherrer method. ASEAN J. Sci. Eng. 2, 65–76 (2021). https://doi.org/10.17509/ajse.v2i1.37647

    Article  Google Scholar 

  45. P. Jayaram, P.P. Pradyumnan, S.Z. Karazhanov, Micro-strain, dislocation density and surface chemical state analysis of multication thin films. Physica B Condens. Matter. 501, 140–145 (2016). https://doi.org/10.1016/j.physb.2016.08.018

    Article  CAS  Google Scholar 

  46. J. Singh, Optical properties of materials and their applications (John Wiley, Hoboken, 2020). https://doi.org/10.1002/9781119506003

    Book  Google Scholar 

  47. G.A. Evingür, Ö. Pekcan, Optical energy band gap of PAAm-GO composites. Compos. Struct. 183, 212–215 (2018). https://doi.org/10.1016/j.compstruct.2017.02.058

    Article  Google Scholar 

  48. S. Gaponenko, H. Demir, Quantum confinement effects in semiconductors, in Applied Nanophotonics (ch3/ quantum confinement in semiconductors). (Cambridge University Press, Cambridge, 2018)

    Google Scholar 

  49. R.K. Gupta, M. Cavas, F. Yakuphanoglu, Structural and optical properties of nanostructure CdZnO films. Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012). https://doi.org/10.1016/j.saa.2012.04.012

    Article  CAS  Google Scholar 

  50. G.T. Chavan et al., Chemical synthesis of Cd1-x-yZnxCuySzSe1-z composite thin films for photoelectrochemical solar cell’. Appl. Surf. Sci. 574, 151581 (2022). https://doi.org/10.1016/j.apsusc.2021.151581

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M. Fadhali.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhali, M.M. Structural, optical, and electrical characterization of laser ablated CdO1-xSnx nanocomposites. J Mater Sci: Mater Electron 34, 1382 (2023). https://doi.org/10.1007/s10854-023-10762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10762-7

Navigation