Skip to main content
Log in

Structural, Morphological, аnd Photoluminescence Properties of TiO2-Doped CdO Nanocomposites Prepared by a Simple Solution Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

Pure CdO and TiO2-doped CdO nanocomposites with different wt.% ratios (0.1, 0.3, and 0.5 wt.%) were prepared by a simple solution method. Structural, morphological, and elemental composition of the prepared samples was undertaken by X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis, and photoluminescence. The diffraction peaks of the samples showed the cubic phase structure and the prepared nanocomposites were on the nanoscale. SEM revealed the plate-like chunks with irregular grains due to agglomeration. The particle size of the pure CdO sample was found to be 61.98 nm, whereas TiO2-doped CdO (0.1, 0.3, and 0.5 wt.%) exhibited 49.57, 35.41, and 31 nm. The first peak was observed at 1.90 eV in the IR-visible region and the second peak at 2.38 eV. Both the peaks correspond to CdO. Near-band-edge emission of 2.38 eV is typical for both pure and doped CdO. It can be suggested that the photo-generated electrons have been trapped in to Ti4+ in the forbidden gap, which enhanced the deep level emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Aydın, H. M. El-Nasser, F. Yakuphanoglu, I. S. Yahia, and M. Aksoy, J. Alloys Compd., 509, 854–858 (2011).

    Article  Google Scholar 

  2. M. H. Vijaykumar, P. A. Vaishampayan, Y. S. Shouche, and T. B. Karegoudar, Enzym. Microbiol. Tech., 40, No. 2, 204–211 (2007).

    Article  Google Scholar 

  3. S. Balachandran, S. G. Praveen, R. Velmurugan, and M. Swaminathan, RSC Adv., 4, 4353–4362 (2014).

    Article  ADS  Google Scholar 

  4. T. O. Mahony, E. Guibal, and J. M. Tobin, Enzym. Microbiol. Tech., 31, 456–463 (2002).

    Article  Google Scholar 

  5. S. Aksoy, Y. Caglar, S. Ilican, and M. Caglar, Int. J. Hydrogen Energy, 3, No. 4, 5191–5195 (2009).

    Article  Google Scholar 

  6. S. K. Vasheghani Farahani, V. Muñoz-Sanjosé, and J. Zúñiga-Pérez, C. F. McConville, T. D. Veal, Appl. Phys. Lett., 102, Article ID 022102 (2013).

  7. S. Kumar, M. Selvakumar Babu, G. Karuthapandian, and S. Chattopadhyay, Mater. Lett., 151, 45–48 (2015).

  8. D. Zhang, Y. Zhang, H. Ma, H. Yan, and Y. Song, Mater. Chem. Phys., 144, No. 3, 369–376 (2009).

    Article  Google Scholar 

  9. Y. Su, A. S. Adeleye, Y. Huang, X. Sun, and C. Dai, Water Res., 63, 102–111 (2014).

    Article  Google Scholar 

  10. K. Mukesh Sharma, J. Narayanan, K. Sanjay Upadhyay, and A. Goel, Biosen. Bioelectron., 74, 299–304 (2015).

  11. F. Yakuphanoglu, Solar Energy, 85, No. 11, 2704–2709 (2011).

    Article  ADS  Google Scholar 

  12. S. T. Hossain and S. K. Mukherjee, J. Hazard Mater., 260, 1073–1082 (2013).

    Article  Google Scholar 

  13. I. R. Chávez Urbiola, R. Ramírez Bon, and Y. V. Vorobiev, Thin Solid Films, 592, 110–117 (2015).

  14. S. Sivakumar, A. Venkatesan, P. Soundhirarajan, and C. P. Khatiwada, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 136, 1751–1759 (2015).

    Google Scholar 

  15. J. L. Jiménez-Pérez, F. R. Gutiérrez, R. Sánchez-Sosa, M. G. Zapata, Z. N. Torres, and C. Pacheco, Mater. Sci. Semicond. Proc., 37, 62–67 (2015).

    Article  Google Scholar 

  16. C. C. Vidyasagar, Y. Arthoba Naik, T. G. Venkatesh, and R. Viswanatha, Powder Technol., 214, No. 3, 337–343 (2011).

  17. S. R. Chowdhury and E. K. Yanful, J. Environ. Manage., 129, 642–651 (2013).

    Article  Google Scholar 

  18. K. R. Murali, A. Kalaivanan, S. Perumal, and N. Neelakand Pillai, J. Alloys Compd., 503, 350–353 (2010).

  19. R. C. Weast and S. M. Selby, Handbook "Chemistry and Physics in CRC," 3rd ed. (1966–1976).

  20. E. K. Abdul-Hussein, A. M. Hayder, and A. I. Khudiar, J. Mater. Res. Technol., 2, No. 2, 182–187 (2013).

    Article  Google Scholar 

  21. A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, R. Asahi, V. P. Dravid, and C. R. Kannewurf, Proc. Nat. Acad. Sci. USA, 98, 7113–7116 (2001).

    Article  ADS  Google Scholar 

  22. O. Lupan, T. Pauporté, T. Le Bahers, I. Ciofini, and B. Viana, J. Phys. Chem. C, 115, 14548–14558 (2011).

    Article  Google Scholar 

  23. F. Essam, Z. Abo, A. Ibrahem, B. Ibrahem, A. Atif Mossad, and A. A. Walied Mohamed, Res. Phys., 12, 562–570 (2019).

  24. M. Iniya Pratheepa and M. Lawrence, Vacuum, 162, 208–213 (2019).

  25. P. Rajeswari and S. Dhanuskodi, Cryst. Res. Technol., 48, No. 1, 589–598 (2013).

    Google Scholar 

  26. V. Radhika, V. Annamalai, G. Vijaya, and D. Annakkodi, J. Environ. Nanotechnol., 5, No. 3, 39–43 (2016).

    Article  Google Scholar 

  27. K. T.-Jun and M. H. Huang, J. Phys. Chem. B, 110, 13717–13721 (2006).

  28. M. Ghosh and C. N. R. Rao, Chem. Phys. Lett., 393, No. 4, 493–497 (2004).

    Article  ADS  Google Scholar 

  29. S. A. Bidier, M. R. Hashim, and M. Bououdina, J. Mater. Sci. Mater. Electron., 28, 11178–11185 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Rao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 1, p. 119, January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.S., Ravikumar, R.V.S.S.N. & Rao, M.C. Structural, Morphological, аnd Photoluminescence Properties of TiO2-Doped CdO Nanocomposites Prepared by a Simple Solution Method. J Appl Spectrosc 90, 155–159 (2023). https://doi.org/10.1007/s10812-023-01517-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01517-7

Keywords

Navigation