Skip to main content
Log in

The role of Mo6+ ion substitution on the electrical and dielectric features of SrNi-hexaferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Mo6+ ions-doped SrNi-hexaferrites, Sr0.8Ni0.2MoxFe12−2xO19 (x ≤ 0.35) HFs, were manufactured by sol–gel approach. Microstructure was analyzed through XRD, SEM–EDX, TEM, and HR-TEM. The effect of Mo6+ ions substitution on the electric-dielectric features of SrNi-HFs has been studied versus frequency and at different temperatures by impedance spectroscopy technique. It has been pointed out that the ac conductivity obeys the power law rule of f, and it is found that the dependencies of both T and substitution ratios in SrNi-HFs are highly influential for grains and grain boundaries. The levels of activation (Ea) determined from dc electrical conductivity fluctuate with the Mo6+ ion substitution into SrNi-HFs implying that the mechanism of conduction is due to the contribution of both polaron and electron hopping. The dielectric parameters were found to be f dependent at T up to 120 °C for various Mo6+ substitution ratios. The complex impedance of Cole–Cole plots shows a semicircle of different dimensions that depend on T, indicating that the resistive and capacitive responses of SrNi-HFs are because of the contribution of grain boundaries and grains formed in the HFs` structures. It has been detected that although the Mo6+ ion substitution creates relatively small differences on grain resistance, it causes a notable change in grain boundary resistance in the SrNi-HFs` system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available within this article.

References

  1. Q. Li, Y. Chen, C. Yu, K. Qian, V.G. Harris, Permeability spectra of planar M-type barium hexaferrites with high Snoek’s product by two-step sintering. J. Am. Ceram. Soc. 103, 5076–5085 (2020)

    CAS  Google Scholar 

  2. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Progr. Mater. Sci. 57, 1191–1334 (2012)

    CAS  Google Scholar 

  3. M.A. Almessiere, Y. Slimani, H. Gungunes, M. Sertkol, M. Nawaz, A. Baykal, Tb3+ substituted strontium hexaferrites: structural, magnetic and optical investigation and cation distribution. Rare Earths 38(4), 402–410 (2020)

    CAS  Google Scholar 

  4. C. Orozco, A. Melendez, S. Manadhar, S.R. Singamaneni, K.M. Reddy, K. Gandha, L.C. Niebedim, C.V. Ramana, Effect of molybdenum incorporation on the structure and magnetic properties of cobalt ferrite. J. Phys. Chem. C 121, 25463–25471 (2017)

    CAS  Google Scholar 

  5. N. Kaveri, J. Balavijayalakshmi, Impact of molybdenum on structural and morphological properties of manganese ferrite nanoparticles by hydrothermal method. Mater. Today 33, 2390–2395 (2020)

    CAS  Google Scholar 

  6. B. Domenichini, D. Aymes, P. Perriat, B. Gillot, Evidence of a hopping mechanism between Mo3+ and Mo4+ octahedral cations in molybdenum spinel ferrites. Mater. Chem. Phys. 39, 80–84 (1994)

    CAS  Google Scholar 

  7. A. Roy, S. Kumar, D. Banerjee, J. Ghose, Mossbauer studies on titanium substituted molybdenum ferrite. Solid State Commun. 114, 143–148 (2000)

    CAS  Google Scholar 

  8. B. Gillot, J. Lorimier, F. Bernard, V. Nivoix, S. Douard, Ph. Tailhades, Thermal behavior and cation distribution in nanosized Mo-Co ferrite spinels Mo0.5CoyFe2.5−yO4 (0 ≤ y ≤ 1) studied by DTG, FT–IR and DC conductivity. Mater. Chem. Phys. 61, 199 (1999).

  9. Z.K. Heiba, N.Y. Mostafa, O.H. Abd-Elkader, Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 368, 246 (2014)

    CAS  Google Scholar 

  10. A.K. Pradhan, P.R. Mandal, K. Bera, S. Saha, T.K. Nath, The effect of Mo doping on the structural and dielectric properties of Co-Zn ferrite. Physica B 525, 1–6 (2017)

    CAS  Google Scholar 

  11. B.V. Rao, A.D.P. Rao, Influence of Mo6+ on magnetic and micro-structural properties of copper ferrite. J. Alloys Compd. 708, 141–145 (2017)

    CAS  Google Scholar 

  12. M.A. Malana, R.B. Qureshi, M.N. Ashiq, M.F. Ehsan, Synthesis, structural, magnetic and dielectric characterizations of molybdenum doped calcium strontium M-type hexaferrites. Ceram. Int. 42, 2686–2692 (2016)

    CAS  Google Scholar 

  13. G.H. Dushaq, S.H. Mahmood, I. Bsoul, H.K. Juwhari, B. Lahlouh, M.A. AlDamen, Effects of molybdenum concentration and valence state on the structural and magnetic properties of BaFe11.6MoxZn0.4−xO19 hexaferrites. Acta Metall. Sin. (Engl. Lett.) 26(5), 509–516 (2013).

  14. S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H. Juwhari, Effects of heat treatment on the phase evolution, structural, and magnetic properties of BaFe12-4xMoxZn3xO19 hexaferrites. Solid State Phenom. 232, 65–92 (2015)

    Google Scholar 

  15. A.H. Salama, A.M. Youssef, Y.S. Rammahand, M. El-Khatib, YBCO as a transition metal oxide ceramic material for energy storage. Bull. Natl. Res. Centre 43(1), 89 (2019)

    Google Scholar 

  16. S. Asiri, S. Güner, A.D. Korkmaz, Md. Amir, A. Baykal, Magneto-optical properties of BaCryFe12−yO19 (0.0 ≤ y ≤ 1.0) hexaferrites. J. Magn. Magn. Mater. 451, 463–472 (2018).

  17. M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Cer. Int. 44, 9000–9008 (2018)

    CAS  Google Scholar 

  18. S. Kochowski, K. Nitsch, Description of the frequency behaviour of metal-SiO2-GaAs structure characteristics by electrical equivalent circuit with constant phase element. Thin Solid Films 415, 133–137 (2002)

    CAS  Google Scholar 

  19. I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, N. Karamat, Effect of Tb–Mn substitution on DC and AC conductivity of Y-type hexagonal ferrite. J. Alloys Compd. 579, 576–582 (2013)

    CAS  Google Scholar 

  20. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  21. K. Ugendar, G. Markandeyulu, S. Mallesh, Polaron conduction mechanism in Nickel ferrite and its rare-earth derivatives. Physica B 606, 412819 (2021)

  22. W. Khan, A.H. Naqvi, M. Gupta, S. Husain, R. Kumar, Small polaron hopping conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135, 054501 (2011)

  23. B. Unal, M.A. Almessiere, Y. Slimani, A. Baykal, A.V. Trukhanov, The conductivity and dielectric properties of niobium substituted Sr–NHFs. Nanomaterials 9, 1168 (2019)

    CAS  Google Scholar 

  24. M.A. Gabal, Y.M. Al Angari, Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 115, 578–584 (2009).

  25. S.S. Narayanan-Potty, M.A. Khadar, Dielectric properties of nanophase Ag2HgI4 and Ag2HgI4-Al2O3 nanocomposites. Bull. Mater. Sci. 23(5), 361–367 (2000)

    CAS  Google Scholar 

  26. S. Sui-Lin, Z. Ling-Zhen, L. Jun-Shou, Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J. Polym. Res. 16, 395–399 (2009)

    Google Scholar 

  27. H.M. El Ghanem, S.A. Jawad, M.H. Al-Saleh, Y.A. Hussain, W. Salah, Effect of dc-bias on the dielectric behavior of CNT/ABS nanocomposites. Physica B. 418, 41–46 (2013)

    Google Scholar 

  28. B. Ünal, M.A. Almessiere, Y. Slimani, A. Baykal. A.V. Trukhanov, The conductivity and dielectric properties of niobium substituted Sr-hexaferrites. Nanomaterials 9(8), 1168 (2019)

  29. A. Munar, A. Andrio, R. Iserte, V. Compan, Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. J. Noncrystalline Solids 357, 3064–3069 (2011)

    CAS  Google Scholar 

  30. J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, M. Hema, R. Baskaran, S.J. Selvasekarapandian, Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. Noncrystalline Solids. 356, 2277–2281 (2010)

    CAS  Google Scholar 

  31. H.E. Atyia, N.A. Hegab, M.A. Affi, M.I. Ismail, Influence of temperature and frequency on the AC conductivity and dielectric properties for Ge15Se60Bi25amorphous films. J. Alloys Compd. 574, 345–353 (2013)

    CAS  Google Scholar 

  32. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders. European. Poly. J. 38, 1887–1897 (2002)

    CAS  Google Scholar 

  33. M. Pandey, G. M. Joshi, K. Deshmukh. M. Khutia, N.N. Ghosh, Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites. Ionics 20(10), 1427–1433 (2014).

  34. K. Pandey, M. M. Dwivedi, M. Singh, S. L. Agrawal, Studies of dielectric relaxation and a.c. conductivity in [(100−x)PEO + xNH4SCN]: Al-Zn ferrite nano composite polymer electrolyte. J. Polym. Res. 17, 127–133 (2010).

  35. S.S. Bellad, S.C. Watawe, B.K. Chougule, Some ac electrical properties of Li–Mg ferrites. Mater. Res. Bull. 34(7), 1099–1106 (1999)

    CAS  Google Scholar 

  36. I. Haldar, M. Biswas, A.J. Nayak, Preparation and evaluation of microstructure, dielectric and conductivity (ac/dc) characteristics of a polyaniline/poly N-vinyl carbazole/Fe3O4 nanocomposite. Polym. Res. 19, 9951 (2012)

    Google Scholar 

  37. T. Naoki, S. Hara, Direct synthesis of conducting polymers from simple monomers. Prog. Polym. Sci. 20, 155–183 (1995)

    Google Scholar 

  38. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Production of single-phase nano size NiFe2O4 particles using sol–gel auto combustion route by optimizing the preparation conditions. J. Mater. Chem. Phys. 112, 572–576 (2008)

    CAS  Google Scholar 

  39. K. Roumaih, The transport properties of the mixed Ni–Cu ferrite. J. Alloys Compd. 465, 291–295 (2008)

    CAS  Google Scholar 

  40. M. Gupta, B.S. Randhawa, Microstructural, magnetic and electric properties of mixed Cs–Zn ferrites prepared by solution combustion method. Solid State Sci. 14, 849–856 (2012)

    CAS  Google Scholar 

  41. B. Ünal, M.A. Almessiere, Y. Slimani, A. D. Korkmaz, A. Baykal, A study on the electrical and dielectric properties of SrGdxFe12−xO19 (x = 0.00–0.05) nanosized M-type hexagonal ferrites. J. Mater. Sci. Mater. Electron. 32, 18317–18329 (2021).

  42. K.V.G. Kutty, C.K. Mathews, T.N. Rao, U.V. Varadaraju, Oxide ion conductivity in some substituted rare earth pyrozirconates. Solid State Ionics 80, 99–110 (1995)

    Google Scholar 

  43. X.L. Xia, J.H. Ouyang, Z.G. Liu, Influence of CaO on structure and electrical conductivity of pyrochlore-type Sm2Zr2O7. Power Sour. 189, 888–893 (2009)

    CAS  Google Scholar 

  44. A. Elahi, M. Ahmad, I. Ali, M.U. Rana, Preparation and properties of sol–gel synthesized Mg-substituted Ni2Y hexagonal ferrites. Ceram. Int. 39, 983–990 (2013)

    CAS  Google Scholar 

  45. L.J. Berchmans, R.K. Selvan, P.N.S. Kumar, C.O. Augustin, Structural and electrical properties of Ni1−xMgxFe2O4 synthesized by citrate gel process. J. Magn. Magn. Mater. 279, 103–110 (2004)

    CAS  Google Scholar 

  46. A. K. Jonscher A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981).

  47. T. Honegger, K. Berton, E. Picard, D. Peyrade, Determination of Clausius-Mossotti factors and surface capacitances for colloidal particles. Appl. Phys. Lett. 98, 181906 (2011)

    Google Scholar 

  48. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    CAS  Google Scholar 

  49. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadi, O.M. Aldossary, Y. Al-Douri, Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped barium titanate ceramics. J. Alloys Compd. 883, 160836 (2021)

    CAS  Google Scholar 

  50. E. Ata, M.A. Ahmed, Dielectric and AC conductivity for BaCo2−xCuxFe16O27 ferrites. J. Magn. Magn. Mater. 208, 27–36 (2000)

    Google Scholar 

  51. S. Narang, A. Singh, K. Singh, High frequency dielectric behavior of rare earth substituted Sr-M hexaferrite. J. Ceram. Process. Res. 8(5), 347–351 (2007)

    Google Scholar 

  52. K.W. Wagner, On the theory of imperfect dielectrics. Ann. Phys. 345, 817 (1913)

    Google Scholar 

  53. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at radiofrequencies. Phys. Rev. 83, 817 (1951)

    Google Scholar 

  54. E. Barsoukov, J.S. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd edn. (Wiley, New York, 2018)

    Google Scholar 

  55. J.R. Dygas, G. Fafilek, M.W. Breiter, Study of grain boundary polarization by two-probe and fourprobe impedance spectroscopy. Solid State Ion. 119, 115–125 (1999)

    CAS  Google Scholar 

  56. M. Rekaby, Dielectric response and Cole–Cole plot analysis for (Zn0.91Mn0.03Co0.06O)x/Cu0.5Tl0.5Ba2Ca2Cu3O10–δ diluted magnetic semiconductor/superconductor composites. Appl. Phys. A 126, 664-669 (2020)

  57. H.T. Langhammer, D. Makovec, Y. Pu, H.P. Abicht, M. Drofenik, Grain boundary re-oxidation of donor doped barium titanate ceramics. J. Eur. Ceram. Soc. 26, 2899–2907 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

MAA, AB, and YS acknowledged the Institute for Research and Medical Consultations of Imam Abdulrahman Bin Faisal University (Dammam, Saudi Arabia) for providing laboratory facilities.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

BÜ, MAA contributed to conceptualization and design of the work. BÜ contributed to investigation, writing, and explaining. YS and MAA contributed to formal analysis. AB and RJ contributed to project administration, editing, and writing—review and editing.

Corresponding author

Correspondence to M. A. Almessiere.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article doesn't contain any studies involving animals performed by any authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünal, B., Almessiere, M.A., Slimani, Y. et al. The role of Mo6+ ion substitution on the electrical and dielectric features of SrNi-hexaferrites. J Mater Sci: Mater Electron 34, 1386 (2023). https://doi.org/10.1007/s10854-023-10744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10744-9

Navigation