Skip to main content
Log in

Determination of dielectric properties of 5CB nematic liquid crystal doped with new chiral calamitic compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nematic liquid crystals are widely used in display technologies. In this research area, nematic liquid crystals (LCs) are doped with different LC materials to obtain modified LC properties which response desired physical properties in display technology. Here, the dielectric properties of 5CB (4-cyano-4′-pentylbiphenyl) nematic liquid crystal which was doped with two pyridine-based chiral calamitic compounds with different number of aromatic rings as well as a branched chiral side chain, which is (S)-3,7-dimethyloctyloxy were investigated. The new composites of non-mesomorphic 4-((S)-3,7-dimethyloctyloxy)phenyl 6-chloronicotinate (Cr) and (4-[4-((S)-3,7-dimethyloctyloxy) phenoxycarbonyl] phenyl 6-chloronicotinate (LC) which exhibits enantiotropic SmA mesophase were prepared using 2 wt% and 5 wt% with respect to the 5CB. The effects of doping with 2 wt% and 5 wt% of new chiral calamitics on dielectric properties of 5CB have been investigated at room temperature. The dielectric parameters (\({\epsilon }^{{\prime }}\), \({\epsilon }^{{\prime \prime }}\), \({\Delta }\epsilon\) (dielectric strength), \(f_\mathrm r\) (relaxation frequency) were determined by dielectric spectroscopy method. The real part of the dielectric constants increases as 2%, 5% LC are added to 5CB, and decreases as 2%, 5% Cr are added to 5CB. It was observed that the diameter of the Cole–Cole graphs, \({\Delta }\epsilon\) and \({\epsilon }_{\text {max}}^{{\prime \prime }}\)data increased with the addition of LC to 5CB, and the two liquid crystal mixture improved the dielectric properties of the material. It has been also determined that adding LC to 5CB, increases the concentration dependent dielectric strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.A. Alrowaili, A.M. Ali, A.M. Al-Baradi, M.S. Al-Buriahi, E.A. Abdel Wahab, K.S. Shaaban, A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Opt. Quant. Electron. 542, 1–19 (2022)

    Google Scholar 

  2. S. Jamila, A. Alzahrani, S.N. Sharma, Z.A. Nazrin, M.S. Alrowaili, Al-Buriahi, Optical and radiation shielding effectiveness of a newly fabricated WO3 doped TeO2–B2O3 glass system. Radiat. Phys. Chem. 193, 109968 (2022)

    Article  Google Scholar 

  3. S. Jamila, Z.A. Alzahrani, H.H. Alrowaili, A. Saleh, S. Hammoud, C. Alomairy, M.S. Sriwunkum, Al-buriahi, synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. Prog. Nucl. Energy 142, 103992 (2021)

    Article  Google Scholar 

  4. M.S. Al-Buriahi, M. Hessien, F. Alresheedi, A.M. Al-Baradi, Z.A. Alrowaili, I. Kebaili, Olarinoye, ZnO–Bi2O3 nanopowders: fabrication, structural, optical, and radiation shielding properties. Ceram. Int. 483, 3464–3472 (2022)

    Article  Google Scholar 

  5. Z.A. Alrowaili, T.A. Taha, M. Ibrahim, K.M.A. Saron, C. Sriwunkum, A.M. Al-Baradi, Al-buriahi, synthesis and characterization of B2O3-Ag3PO4-ZnO-Na2O glasses for optical and radiation shielding applications. Optik 248, 168199 (2021)

    Article  CAS  Google Scholar 

  6. K.K. Vardanyana, D.M. Sitaa, R.D. Waltona, I.S. Gurfinkiela, W.M. Saidel, Liquid crystalline cyanobiphenyl homologues doped with gold nanoparticles. Liq. Cryst. 39, 1083 (2012)

    Article  Google Scholar 

  7. C.J. Hsu, L.J. Lin, M.K. Huang, C.Y. Huang, Electro-optical effect of gold nanoparticle dispersed in nematic liquid crystals. Crystals. 7, 287 (2017)

    Article  Google Scholar 

  8. R. Manohar, S.P. Yadav, A.K. Srivastava, A.K. Misra, K.K. Pandey, P.K. Sharma, A.C. Pandey, Zinc oxide (1% Cu) nanoparticle in nematic liquid crystal: dielectric and electro-optical study. Jpn. J. Appl. Phys. 48, 101501 (2009)

    Article  Google Scholar 

  9. J.W. Goodby, I.M. Saez, S.J. Cowling, V. Gortz, M. Draper, A.W. Hall, S. Sia, G. Cosquer, S.-E. Lee, E. Peter Raynes, Angew. Chem. Int. Ed. 47, 2754 (2008)

    Article  CAS  Google Scholar 

  10. H. Kekler, R. Hatz, Handbook of liquid crystals (Verlag Chemie, Weinheim, 1980)

    Google Scholar 

  11. K. Pal, Hybrid nanocomposites: fundamentals, synthesis, and applications (Jenny Stanford Publishing, New York, 2019)

    Book  Google Scholar 

  12. B. Bilgin-Eran, C. Tschierske, S. Diele, U. Baumeister, Fluoroalkylated mononuclear ortho-metallated mesogens: new molecules at the calamitic-discotic cross-over point. J. Mater. Chem. 16, 1145–1153 (2006)

    Article  CAS  Google Scholar 

  13. S.A. Hudson, P.M. Maitlis, Calamitic metallomesogens: metal-containing liquid crystals with rodlike shapes. Chem. Rev. 93, 861–885 (1993)

    Article  CAS  Google Scholar 

  14. N. Hoshino, K. Takahashi, T. Sekiuchi, H. Tanaka, Y. Matsunaga, Inorg. Chem. 37, 882–889 (1998)

    Article  CAS  Google Scholar 

  15. N. Hoshino, Liquid crystal properties of metal-salicylaldimine complexes: chemical modifications towards lower symmetry. Coord. Chem. Rev. 174, 77–108 (1998)

    Article  CAS  Google Scholar 

  16. P.J. Collings, M. Hird, Introduction to liquid crystals (Taylor & Francis, London, 2001)

    Google Scholar 

  17. B. Donnio, D. Guillon, R. Deschenaux, D.W. Bruce, in Comprehensive coordination chemistry II. ed. by J.A. McCleverty, T.J. Meyer (Elsevier, Oxford, 2003)

    Google Scholar 

  18. N.A. Clark, S.T. Lagerwall, Submicrosecond bistable electro-optic switching in liquid crystals. Appl. Phys. Lett. 36, 899–901 (1980)

    Article  CAS  Google Scholar 

  19. E.J. Davis, J.W. Goodby, Symmetry and chirality in liquid crystals, in Handbook of liquid crystals fundamentals of liquid crystals, vol. 7, ed. by J.W. Goodby, P.J. Collings, T. Kato et al. (Wiley, Weinheim, 2014), pp.197–230

    Google Scholar 

  20. J. Borchardt, J. Alexander, K. Slenes, R. De La Fuente, Ceramic-polymer composite for high energy density capacitors, In Proceedings of the 16th IEEE International Pulsed Power Conference, Albuquerque, NM, 17–22 June 2007, Vol 1, pp.294–297

  21. R.R. Tummala, J. Laskar, Gigabit wireless: system-on-a-package technology. Proc. IEEE 92, 376–387 (2004)

    Article  Google Scholar 

  22. F.M. Gray, M. Armand, Energy storage systems for electronics (Gordon and Breach Science Publications, Amsterdam, 2000)

    Google Scholar 

  23. E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles. J. Power Sources. 168, 2–11 (2007)

    Article  CAS  Google Scholar 

  24. S. Fiedziuszko, I. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. Stitzer, K. Wakino, Dielectric materials, devices, and circuits. IEEE Trans. Microw. Theory Tech. 50, 706–720 (2002)

    Article  CAS  Google Scholar 

  25. W. Jillek, W.K.C. Yung, Embedded components in printed circuit boards: a processing technology review. Int. J. Adv. Manuf. Technol. 25, 350–360 (2004)

    Article  Google Scholar 

  26. D. Vardar, H. Ocak, H. Akdaş-Kılıç, O. Jeannin, F. Camerel, B. Bilgin-Eran et al., Pyridine-based chiral smectogens: effects of polar end groups on liquid crystal properties. Liq. Cryst. 48(5), 616–625 (2020)

    Article  Google Scholar 

  27. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–352 (1941)

    Article  CAS  Google Scholar 

  28. I. Bunget, M. Popescu, Physics of solid dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  29. A. Chelkowski, Dielectric physics (studies in physical and theoretical chemistry) (Elsevier, Amsterdam, 1980)

    Google Scholar 

  30. H. Ocak, B. Bilgin-Eran, C. Tschierske et al., Effect of fluorocarbon chains on the mesomorphic properties of chiral imines and their complexes with copper (II). J. Mater. Chem. 19, 6995–7001 (2009)

    Article  CAS  Google Scholar 

  31. D. Guzeller, H. Ocak, B. Bilgin-Eran et al., Development of tilt, biaxiality and polar order in bent-core liquid crystals derived from 4′-hydroxybiphenyl-3-carboxylic acid. J. Mater. Chem. C 3, 4269–4282 (2015)

    Article  CAS  Google Scholar 

  32. P.C. Jocelyn, N. Polgar, Methyl-substituted αβ-unsaturated acids part I. J. Chem. Soc. (1953). https://doi.org/10.1039/JR9530000132

    Article  Google Scholar 

  33. H. Kondo, T. Okazaki, N. Endo, S. Mihashi, A. Yamaguchi, H. Tsuruta, S.Akutagawa, Optically active phenyl benzoate derivatives as ferroelectric chiral smectic liquid crystals. Jpn. Kokai Tokkyo Koho, JP 63033351 A 19880213 (1988)

  34. E. Chin, J.W. Goodby, A protection-deprotection method for the synthesis of substituted benzoyloxybenzoates. Mol. Cryst. Liq. Cryst. 141, 311–320 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Yildiz Technical University Scientific Research Projects Coordination Department under Project Number: FBA-2021-4516.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors have no relevant financial or non-financial interests to disclose. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NYC, DÖ, DV, PK, AAB, HO and BBE. The first draft of the manuscript was written by NYC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. All data generated or analysed during this study are included in this published article.

Corresponding author

Correspondence to N. Yilmaz Canli.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canli, N.Y., Özükanar, D., Vardar, D. et al. Determination of dielectric properties of 5CB nematic liquid crystal doped with new chiral calamitic compounds. J Mater Sci: Mater Electron 34, 1304 (2023). https://doi.org/10.1007/s10854-023-10735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10735-w

Navigation