Skip to main content
Log in

Effect of Ga doping on structural, morphological, optical and electrical properties of CuO thin films deposited by spray pyrolysis technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper oxide (CuO) and gallium (Ga) doped copper oxide thin films were fabricated using spray pyrolysis technique under normal atmosphere. The films were deposited onto a glass substrate at a temperature of 380 °C and their subsequent properties were examined and discussed. XRD analysis confirms that the deposited films have the monoclinic phase of cupric oxide (CuO). SEM image reveals that the pure CuO film has nano-fiber like morphology, which changes considerably with Ga doping. EDX exploration ensures that the fabricated films contain the desired copper, oxygen and gallium elements. The transmittance of CuO thin film decreases as doping level of Ga increases up to 2%, after which it increases. The absorption coefficient and optical band gap of CuO thin film also found to changes with Ga doping. However, Ga doping enhances the photo response capability of CuO thin films up to a specific level of doping. It has been found that the CuO thin film has a resistivity of 5.69 × 102 (ohm-cm) and 2% Ga-doped CuO thin film exhibited the lowest electrical resistivity. The obtained results of the Hall Effect measurement indicate that the carrier of the CuO thin film is p-type, and it interestingly changes to n-type due to the doping of Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. S. Santhosh Kumar Jacob, I. Kulandaisamy, I. Loyola Poul, A. Raj, Ahmed, Z. Abdeltawab, Sayed, M.M. Ubaidullah, Improved optoelectronic properties of spray pyrolysis coated Zn doped Cu2O thin films for photodetector applications. Opt. Mater. 116, 111086 (2021). https://doi.org/10.1016/j.optmat.2021.111086

    Article  CAS  Google Scholar 

  2. J. Oleksii Diachenko, O. Ková Jr., P. Dobrozhan, N.J. Ková, J. Skriniarova, A. Opanasyuk, Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings 11, 1392 (2021). https://doi.org/10.3390/coatings11111392

    Article  CAS  Google Scholar 

  3. M.H. Babu, J. Podder, B.C. Dev, M. Sharmin, To n-type transition with wide blue shift optical band gap of spray synthesized cd doped CuO thin films for optoelectronic device applications. Surf. Interfaces. 19, 100459 (2020). https://doi.org/10.1016/j.surfin.2020.100459

    Article  CAS  Google Scholar 

  4. Y. Gülen, F. Bayansal, B. Şahin, H.A. Cetinkara, H.S. Güder, Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceram. Int. 39, 6475–6480 (2013). https://doi.org/10.1016/j.ceramint.2013.01.077

    Article  CAS  Google Scholar 

  5. M.H. Kabir, M. Hafiz, S.A. Urmi, M. Jahidul Haque, M. Mintu Ali, M. Saifur Rahman, M.K.R. Khan, M.S. Rahman, Effect of Ga doping on microstructure, morphology, optical and electrical properties of spray deposited CdO thin films. Opt. Mater. 125, 112123 (2022). https://doi.org/10.1016/j.optmat.2022.112123

    Article  CAS  Google Scholar 

  6. K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337–343 (2013). https://doi.org/10.1016/j.mssp.2012.09.016

    Article  CAS  Google Scholar 

  7. M. Ashour, E.M. Ahmed, Abdalla, M. Shaban, Simple and low-cost synthesis of Ba-doped CuO thin films for highly efficient solar generation of hydrogen. J. Phys. Chem. C 124, 22347–22356 (2020). https://doi.org/10.1021/acs.jpcc.0c04760

    Article  CAS  Google Scholar 

  8. F. Bayansala, O. Şahin, H.A. Çetinkar, Mechanical and structural properties of Li-doped CuO thin films deposited by the successive ionic layer adsorption and reaction method. Thin Solid Films 697, 137839 (2020). https://doi.org/10.1016/j.tsf.2020.137839

    Article  CAS  Google Scholar 

  9. Z. Wael, Z.S. Tawfik, M. Khalifa, Sh.. Abdel–wahab, A.H. Hammad, Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors. J. Mater. Sci. Mater. Electron. 30, 1275–1281 (2019). https://doi.org/10.1007/s10854-018-0395-0

    Article  CAS  Google Scholar 

  10. H. Absike et al., Synthesis of CuO thin films based on Taguchi design for solar absorber. Opt. Mater. 118, 111224 (2021). https://doi.org/10.1016/j.optmat.2021.111224

    Article  CAS  Google Scholar 

  11. M.H. Babu, J. Podder, Bond length controlling opto-structural properties of Mn doped CuO thin films: an experimental and theoretical study. Mater. Sci. Semicond. Process. 129, 105798 (2021). https://doi.org/10.1016/j.mssp.2021.105798

    Article  CAS  Google Scholar 

  12. A. Othmane Daoudi, M. Elmadani, M. Lharch, Fahoume, A new efficient synthesis of CuO thin films using modified SILAR method. Opt. Quant. Electron. 52, 413 (2020). https://doi.org/10.1007/s11082-020-02530-2

    Article  CAS  Google Scholar 

  13. B. Silan et al., Modification of electrical and optical properties of CuO thin films by Ni doping. J. Sol-Gel Sci. Technol. 78, 422–429 (2016). https://doi.org/10.1007/s10971-015-3953-4

    Article  CAS  Google Scholar 

  14. A. Prakash Chand, A. Gaur, U.K. Kumar, Gaur, Structural and optical study of Li doped CuO thin films on Si (100) substrate deposited by pulsed laser deposition. Appl. Surf. Sci. 307, 280–286 (2014). https://doi.org/10.1016/j.apsusc.2014.04.027

    Article  CAS  Google Scholar 

  15. F. Bayansal, Y. Gülen, B. Şahin, S. Kahraman, H.A. Çetinkara, CuO nanostructures grown by the SILAR method: influence of Pb-doping on the morphological, structural and optical properties. J. Alloys Compd. 619, 378–382 (2015). https://doi.org/10.1016/j.jallcom.2014.09.085

    Article  CAS  Google Scholar 

  16. I. Silan Baturay, C. Cihat Ozaydın, Structural, optical, and electrical characterizations of Cr-doped CuO thin films. J. Mater. Sci: Mater. Electron. 33, 7275–7287 (2022). https://doi.org/10.1007/s10854-022-07918-2

    Article  CAS  Google Scholar 

  17. N. Jhansi, D. Balasubramanian, R. Raman, R. Jayavel, Impact of yttrium on structural, optical and electrical behavior of CuO thin film prepared by JN spray pyrolysis technique for diode application. J. Mater. Sci.: Mater. Electron. 33, 22785–22797 (2022). https://doi.org/10.1007/s10854-022-09046-3

    Article  CAS  Google Scholar 

  18. D. Naveena, T. Logu, K. Sethuraman, A. Chandra, Bose, Significant enhancement of photo-physicochemical properties of Yb doped copper oxide thin films for efficient solid-state solar cell. J. Alloys Compd. 795, 187–196 (2019). https://doi.org/10.1016/j.jallcom.2019.04.233

    Article  CAS  Google Scholar 

  19. M. Meherun Nesa, K.S. Sharmin, A.H. Hossain, Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J. Mater. Sci. Mater. Electron. 28, 12523–12534 (2017). https://doi.org/10.1007/s10854-017-7075-3

    Article  CAS  Google Scholar 

  20. K.S. Jing Wu, K.N. Hui, L. Hui, H.-H. Li, Y.R. Chun, Cho, Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J. Mater. Sci. Mater. Electron. 27, 1719–1724 (2016). https://doi.org/10.1007/s10854-015-3945-8

    Article  CAS  Google Scholar 

  21. K. Usharani, A.R. Balu, Structural, optical, and electrical properties of Zn-doped CdO thin films fabricated by a simplified spray pyrolysis technique. Acta Metall. Sin. (Engl. Lett.) 28, 64–71 (2015). https://doi.org/10.1007/s40195-014-0168-6

    Article  CAS  Google Scholar 

  22. S. Mondal, Structural and optical properties of CBD synthesised CdO thin films: influence of ni incorporation. Adv. Mater. Pro. Technol. 8(3), 2744–2751 (2021). https://doi.org/10.1080/2374068X.2021.1939992

    Article  Google Scholar 

  23. D. Davoud, Influence of nitrogen concentration on electrical, mechanical, and structural properties of tantalum nitride thin films prepared via DC magnetron sputtering. App. Phy. A 128, 400 (2022). https://doi.org/10.1007/s00339-022-05501-4

    Article  CAS  Google Scholar 

  24. Davoud, Dastan et al., Influence of heat treatment on H2S gas sensing features of NiO thin films deposited via thermal evaporation technique. Mat. Sci. Semi Process 154, 107232 (2023). https://doi.org/10.1016/j.mssp.2022.107232

    Article  CAS  Google Scholar 

  25. A. Silan Baturay, D. Tombak, B.Y. Selim Ocak, n-Type conductivity of CuO thin films by metal doping. Appl. Surf. Sci. 477, 91–95 (2019). https://doi.org/10.1016/j.apsusc.2017.12.004

    Article  CAS  Google Scholar 

  26. S.L. Davoud Dastan, N.B. Panahi, Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci.: Mater. Electron. 27, 12291–12296 (2016). https://doi.org/10.1007/s10854-016-4985-4

    Article  CAS  Google Scholar 

  27. K. Azadeh Jafaria, D. Tahanib, S. Dastanc, Z. Asgaryd, X.-T. Shie, W.-D. Yinf, Z.H. Garmestanic, Ş Ţălu, Ion Implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces 18, 100463 (2020)

    Article  Google Scholar 

  28. X.-T. Yin, H. Huang, J.-L. Xie, D. Dastan, J. Li, Y. Liu, X.-M. Tan, X.-C. Gao, W.A. Shah, X.-G. Ma, High-performance visible-light active Sr-doped porous LaFeO3 semiconductor prepared via sol–gel method. Green Chem. Lett. Rev. 15, 546–556 (2022). https://doi.org/10.1080/17518253.2022.2112093

    Article  CAS  Google Scholar 

  29. Fatih, T. tas¸kopru, B. Sahin, H.A. Cetinkara, Effect of cobalt doping on nanostructured CuO thin films. Metall. Mater. Trans. A 45, 3670–3674 (2014). https://doi.org/10.1007/s11661-014-2306-1

    Article  CAS  Google Scholar 

  30. M.M.H. Babu, J. Podder, R.R. Tofa, L. Ali, Effect of Co doping in tailoring the crystallite size, surface morphology and optical band gap of CuO thin films prepared via thermal spray pyrolysis. Surf. Interfaces. 25, 101269 (2021). https://doi.org/10.1016/j.surfin.2021.101269

    Article  CAS  Google Scholar 

  31. M. Golam Mortuza Nion, M. Humayan Kabir, M.A. Mona, M. Jahidul Haque, N. Shahariar, M. Hafiz, M.S. Rahman, Effect of Al doping on morphology and optical properties of spray pyrolized MgO thin films. Results Mater. 12, 100235 (2021). https://doi.org/10.1016/j.rinma.2021.100235

    Article  CAS  Google Scholar 

  32. M.R. Alam, M. Mozibur Rahman, A.M.M. Tanveer Karim, M.K.R. Khan, Effect of ag incorporation on structural and opto–electric properties of pyrolized CdO thin films. Int. Nano Let. 8, 287–295 (2018). https://doi.org/10.1007/s40089-018-0251-5

    Article  CAS  Google Scholar 

  33. A.M.M. Tanveer Karim, M.K.R. Khan, M. Mozibur Rahman, Effect of Zn/Cd ratio on the optical constants and photoconductive gain of ZnO–CdO crystalline thin films. Mater. Sci. Semicond. Process. 41, 184–192 (2016). https://doi.org/10.1016/j.mssp.2015.08.037

    Article  CAS  Google Scholar 

  34. K. Hafsa Faiz, M.F. Siraj, M. Khan, S. Irshad, M.S. Majeed, S. Rafique, Naseem, Microstructural and optical properties of dysprosium doped copper oxide thin films fabricated by pulsed laser deposition technique. Mater. Sci. Mater. Electron. 27, 8197–8205 (2016). https://doi.org/10.1007/s10854-016-4824-7

    Article  CAS  Google Scholar 

  35. D. Davoud et al., Influence of nitrogen concentration on electrical, mechanical, and structural properties of tantalum nitride thin films prepared via DC magnetron sputtering. Appl. Phys. A 128, 400 (2022). https://doi.org/10.1007/s00339-022-05501-4

    Article  CAS  Google Scholar 

  36. H.Z. Asl, S.M. Rozati, Spray deposition of n-type cobalt-doped CuO thin films: influence of cobalt doping on structural, morphological, electrical, and optical properties. J. Electron. Mater. 49, 1534–1540 (2020). https://doi.org/10.1007/s11664-019-07858-4

    Article  CAS  Google Scholar 

  37. Ş Baturay, Conversion from p- to n-type conductivity in CuO thin films through Zr doping. J. Electron. Mater. 51, 5644–5654 (2022). https://doi.org/10.1007/s11664-022-09836-9

    Article  CAS  Google Scholar 

  38. C. Guillén, J. Herrero, Single-phase Cu2O and CuO thin films obtained by low-temperature oxidation processes. J. Alloys Compd. 737, 718–724 (2018). https://doi.org/10.1016/j.jallcom.2017.12.174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author M. Humayan Kabir is thankful to Md. Manwar Hossain, Technical officer, department of Glass & Ceramic Engineering, RUET for his continuous support to conduct this research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Investigation, Resources, Writing—Original Draft, Writing—review & editing, Project administration [MHK]; Methodology, Investigation [MH]; Methodology, Investigation [SR]; Investigation [MdSR]; Investigation [HR]; Investigation [MMR]; Investigation [MdFH]; Resources [MMA]; Resources [MJH]; Writing—review & editing [MKRK]; Supervision [MSR].

Corresponding author

Correspondence to M. Humayan Kabir.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.H., Hafiz, M., Rahman, S. et al. Effect of Ga doping on structural, morphological, optical and electrical properties of CuO thin films deposited by spray pyrolysis technique. J Mater Sci: Mater Electron 34, 1258 (2023). https://doi.org/10.1007/s10854-023-10711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10711-4

Navigation