Skip to main content

Advertisement

Log in

Aminoterephthalic acid ligand terminated zirconium metal-organic framework/palladium nanoparticles composite for voltammetric determination of syringic acid in wine samples

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we investigated the electrochemical determination of syringic acid using palladium nanoparticles dispersed zirconium metal-organic framework composite. Transmission electron microscopic images illustrated that the average diameter of < 10 nm spherical Pd nanoparticles was decorated on the surface of the metal-organic framework. Cyclic voltammetric analysis showed that the composite exhibited well-defined oxidation (0.61 eV) and reduction (0.48 eV) peaks toward the determination of syringic acid in 0.1 M phosphate buffer saline (pH 3). In addition, the composite electrode demonstrated higher currents than the bare glassy carbon electrode and pure metal-organic framework. The differential pulse voltammetric analysis showed that the composite electrode manifested a dynamic linear range of concentrations from 0.5 to 100 µM with a regression equation of I (µA) = 0.3217x + 5.8055 (R2 = 0.9981). The sensitivity and detection limit of the composite electrode were identified as 0.32 µA/µM and 0.17 µM, respectively. The composite electrode demonstrated good anti-interference properties towards benzoic acid, routine, caffeic acid, sinapic acid, and KCl. The composite electrode was used to determine the syringic acid level in wine samples with good recoveries (99 to 103%), indicating its feasibility for practical applications in the pharmaceutical sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. L.M. Ramirez-Lopez, W. McGlynn, C.L. Goad, C.A.M. DeWitt, Simultaneous determination of phenolic compounds in cynthiana grape (Vitis aestivalis) by high-performance liquid chromatography-electrospray ionization-mass spectrometry. Food Chem. 149, 15–24 (2014)

    Article  CAS  Google Scholar 

  2. T.S. Fukuji, F.G. Tonin, M.F.M. Tavares, Optimization of a method for determination of phenolic acids in exotic fruits by capillary electrophoresis. J. Pharm. Biomed. Anal. 51, 430–438 (2010)

    Article  CAS  Google Scholar 

  3. R.Y. Gan, C.L. Chan, Q.Q. Yang, H.B. Li, D. Zhang, Y.Y. Ge, A. Gunaratne, J. Ge, H. Corke, Bioactive compounds and beneficial functions of sprouted grains, in Sprouted grains: nutritional value, production, and applications. ed. by B.H. Feng, B. Nemzer, J.W. DeVries (Elsevier, Amsterdam, 2019), pp.191–246

    Chapter  Google Scholar 

  4. R.J. Robbins, Phenolic acids in foods: an overviewof analytical methodology. J. Agri. Food Chem. 51, 2866–2887 (2003)

    Article  CAS  Google Scholar 

  5. C. Srinivasulu, M. Ramgopal, G. Ramanjaneyulu, C.M. Anuradha, C. Suresh, Kumar, Syringic acid (SA)–a review of its occurrence, biosynthesis, pharmacological and industrial Importance. Biomed. Pharmacother. 108, 547–557 (2018)

    Article  CAS  Google Scholar 

  6. J.M. Pezzuto, Grapes and human health: a perspective. J. Agric. Food Chem. 56, 6777–6784 (2008)

    Article  CAS  Google Scholar 

  7. S. Xiang, J. Xiao, Protective effects of syringic acid on inflammation, apoptosis and intestinal barrier function in Caco-2 cells following oxygenglucose deprivation/reoxygenationinduced injury. Exp. Ther. Med. 23, 66 (2022)

    Article  CAS  Google Scholar 

  8. E. Ogut, K. Armagan, Z. Gül, The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab. Brain Dis. 37, 859–880 (2022)

    Article  CAS  Google Scholar 

  9. L.A. Pacheco-Palencia, S. Mertens-Talcott, S.T. Talcott, Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Acai (Euterpe oleracea Mart.). J. Agric. Food Chem. 56, 4631–4636 (2008)

    Article  CAS  Google Scholar 

  10. Q.V. Vo, M. Van Bay, P.C. Nam, D.T. Quang, M. Flavel, N.T. Hoa, A. Mechler, Theoretical and experimental studies of the antioxidant and antinitrosant activity of syringic acid. J. Org. Chem. 85, 15514–15520 (2020)

    Article  CAS  Google Scholar 

  11. A.C. Mirza, S.S. Panchal, Safety evaluation of syringic acid: subacute oral toxicity studies in wistar rats. Heliyon 5, e02129 (2019)

    Article  Google Scholar 

  12. P. Mattila, J. Kumpulainen, Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 50, 3660–3667 (2002)

    Article  CAS  Google Scholar 

  13. N. Sharma, U.K. Sharma, A.P. Gupta, A.K. Sinha, Simultaneous determination of epicatechin, syringic acid, quercetin-3-O-galactoside and quercitrin in the leaves of Rhododendron species by using a validated HPTLC method. J. Food Compos. Anal. 23, 214–219 (2010)

    Article  CAS  Google Scholar 

  14. M.J. Martelo-Vidal, M. Vázquez, Determination of polyphenolic compounds of red wines by UV–VIS–NIR spectroscopy and chemometrics tools. Food Chem. 158, 28–34 (2014)

    Article  CAS  Google Scholar 

  15. D. Pattappan, S. Vargheese, K.V. Kavya, R.T. Rajendra Kumar, Y. Haldorai, Metal-organic frameworks with different oxidation states of metal nodes and aminoterephthalic acid ligand for degradation of rhodamine B under solar light. Chemosphere. 286, 131726 (2022)

    Article  CAS  Google Scholar 

  16. K.V. Kavya, D. Muthu, D. Pattappan, S. Vargheese, N. Gokila, M.S. Sivaramkumar, R.T. Rajendra Kumar, Y. Haldorai, Palladium nanoparticles decorated Ni-MOF nanocomposite as an electrochemical platform for the selective detection of dopamine. Mater. Lett. 306, 130926 (2022)

    Article  CAS  Google Scholar 

  17. K.V. Kavya, D. Muthu, S. Varghese, D. Pattappan, R.T. Rajendra Kumar, Y. Haldorai, Glassy carbon electrode modified by gold nanofibers decorated iron metal-organic framework nanocomposite for voltammetric determination of acetaminophen. Carbon Lett. 32, 1441–1449 (2022)

    Article  Google Scholar 

  18. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  CAS  Google Scholar 

  19. Y. Xue, S. Zheng, H. Xue, H. Pang, Metal-organic framework composites and their electrochemical applications. J. Mater. Chem. A 7, 7301–7327 (2019)

    Article  CAS  Google Scholar 

  20. K.M. Hassan, Z. Khalifa, G.M. Elhaddad, M. Abdel, Azzem, The role of electrolytically deposited palladium and platinum metal nanoparticles dispersed onto poly(1,8-diaminonaphthalene) for enhanced glucose electrooxidation in biofuel cells. Electrochim. Acta 355, 136781 (2020)

    Article  CAS  Google Scholar 

  21. R. Li, D. Wu, H. Li, C. Xu, H. Wang, Y. Zhao, Y. Cai, Q. Wei, B. Du, Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Anal. Biochem. 414, 196–201 (2011)

    Article  CAS  Google Scholar 

  22. Y. Jiang, J. Cui, T. Zhang, M. Wang, G. Zhu, P. Miao, Electrochemical detection of T4 polynucleotide kinase based on target-assisted ligation reaction coupled with silver nanoparticles. Anal. Chim. Acta. 1085, 85–90 (2019)

    Article  CAS  Google Scholar 

  23. K.V. Kavya, S. Vargheese, D. Pattappan, R.T. Rajendra Kumar, Y. Haldorai, Screen-printed electrode modified by Au/NH2-MIL-125(Ti) composite for electrochemical sensing performance of gallic acid in green tea and urine samples. Chem. Phys. Lett. 807, 140074 (2022)

    Article  CAS  Google Scholar 

  24. Y. Tu, F. Xie, X. Gao, X. Ma, H.F. Lin, Xigen, Y. Ping, L. Yu, Lu, Self-template synthesis of flower-like hierarchical graphene/copper oxide@copper(II) metal-organic framework composite for the voltammetric determination of caffeic acid. Microchim. Acta. 187, 258 (2020)

    Article  CAS  Google Scholar 

  25. J. Robak, K. Węgiel, B. Burnat, S. Skrzypek, A carbon ceramic electrode modified with bismuth oxide nanoparticles for determination of syringic acid by stripping voltammetry. Microchim. Acta. 184, 4579–4586 (2017)

    Article  CAS  Google Scholar 

  26. W. Sordoń, A. Salachna, M. Jakubowska, Voltammetric determination of caffeic, syringic and vanillic acids taking into account uncertainties in both axes. J. Electroanal. Chem. 764, 23–30 (2016)

    Article  Google Scholar 

  27. P.C. Pwavodi, V.H. Ozyurt, S. Asir, M. Ozsoz, Electrochemical sensor for determination of various phenolic compounds in wine samples using Fe3O4 nanoparticles modified carbon paste electrode. Micromachines. 12, 312 (2021)

    Article  Google Scholar 

  28. X. Fang, X. Chen, Y. Liu, Q. Li, Z. Zeng, T. Maiyalagan, S. Mao, Nanocomposites of zr(IV)-based metal-organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS appl. Nano Mater. 2, 2367–2376 (2019)

    Article  CAS  Google Scholar 

  29. J. Li, T. Musho, J. Bright, N. Wu, Functionalization of a metal-organic framework semiconductor for tuned band structure and catalytic activity. J. Electrochem. Soc. 166, H3029–H3034 (2019)

    Article  CAS  Google Scholar 

  30. D. Banerjee, W. Xu, Z. Nie, L.E.V. Johnson, C. Coghlan, M.L. Sushko, D. Kim, M.J. Schweiger, A.A. Kruger, C.J. Doonan, P.K. Thallapally, Zirconium-based metal-organic framework for removal of perrhenate from water. Inorg. Chem. 55, 8241–8243 (2016)

    Article  CAS  Google Scholar 

  31. R.R. Solís, M. Peñas-Garzón, C. Belver, J.J. Rodriguez, J. Bedia, Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment. J. Environ. Chem. Eng. 10, 107122 (2022)

    Article  Google Scholar 

  32. G.R. Monama, S.B. Mdluli, G. Mashao, M.D. Makhafola, K.E. Ramohlola, K.M. Molapo, M.J. Hato, K. Makgopa, E.I. Iwuoha, K.D. Modibane, Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction. Renew. Energy. 119, 62–72 (2018)

    Article  CAS  Google Scholar 

  33. I. Bespalov, M. Datler, S. Buhr, W. Drachsel, G. Rupprechter, Y. Suchorski, Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM and XPS study. Ultramicroscopy. 159, 147–151 (2015)

    Article  CAS  Google Scholar 

  34. V.K. Bajpai, Y. Haldorai, I. Khan, S. Sonwal, M. Pal Singh, S. Yadav, B.A. Paray, B.L. Jan, S.-M. Kang, Y.S. Huh, Y.-K. Han, S. Shukla, Au@Zr–based metal-organic framework composite as an immunosensing platform for determination of hepatitis B virus surface antigen. Mikrochim. Acta. 188, 365 (2021)

    Article  CAS  Google Scholar 

  35. C. Wang, L. Zhang, Z. Guo, J. Xu, H. Wang, K. Zhai, X. Zhuo, A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim. Acta. 169, 1–6 (2010)

    Article  CAS  Google Scholar 

  36. V. Ferreira, A. Tenreiro, L.M. Abrantes, Electrochemical, microgravimetric and AFM studies of polythionine films. application as new support for the immobilisation of nucleotides. Sens. Actuators B Chem. 119, 632–641 (2006)

    Article  CAS  Google Scholar 

  37. A.U. Alam, Y. Qin, M.M.R. Howlader, N.X. Hu, M.J. Deen, Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and Β-cyclodextrin. Sens. Actuators B Chem 254, 896–909 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India, under the Ramalingasami Fellowship Scheme (BT/RLF/Re-entry/48/2015). This study was also supported by the Researchers Supporting Project number (RSP2023R142), King Saud University, Riyadh, Saudi Arabia.

Funding

Funding was provided by Department of Biotechnology, Ministry of Science and Technology, India. King Saud University also provided the funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KVK, Methodology: SV, Formal analysis and investigation: SR, Writing—original draft preparation: KVK, DP, Writing—review and editing: RTRK, Funding acquisition: RSK, Resources, Supervision: YH.

Corresponding author

Correspondence to Yuvaraj Haldorai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavya, K.V., Pattappan, D., Vargheese, S. et al. Aminoterephthalic acid ligand terminated zirconium metal-organic framework/palladium nanoparticles composite for voltammetric determination of syringic acid in wine samples. J Mater Sci: Mater Electron 34, 1240 (2023). https://doi.org/10.1007/s10854-023-10697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10697-z

Navigation