Skip to main content
Log in

Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a simple and effective method was proposed to improve the electrocatalytic ability of overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films modified on glassy carbon electrode for rutin and luteolin determination. The composite electrode was prepared by cyclic voltammetry copolymerization with LiClO4-water as the supporting electrolyte. The peak current of rutin and luteolin on the composite electrode gradually decreased or even disappeared with the increase in the positive potential limit. After incubation in NaOH-ethanol solution with a volume ratio of 1:1, the composite electrodes prepared at positive potential limit greater than 1.5 V exhibited enhanced differential pulse voltammetry peak currents, reduced charge transfer resistance, larger effective specific surface area and higher electron transfer rate constant. The composite electrode prepared in the potential range of 0–1.7 V showed optimal electrocatalytic performance. The X-ray photoelectron spectroscopy results indicated that the content of −SO2/−SO and −C=N− groups in the composite film increased significantly after incubation. Further, the Raman spectra and Fourier transform infrared spectra revealed that the thiophene ring structure changed from benzene-type to quinone-type, and the quinone-type pyrrole ring was formed. The electrocatalytic mechanism of the composite film was proposed based on the experimental results and further verified by Density Functional Theory calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye S H, Li G R. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution. Frontiers of Chemical Science and Engineering, 2018, 12(3): 473–480

    Article  CAS  Google Scholar 

  2. Zhu H, Li M, Wang D H, Zhou S B, Peng C. Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. Journal of the Electrochemical Society, 2017, 164(9): A1820–A1825

    Article  CAS  Google Scholar 

  3. Wang W, Lv H J, Du J, Chen A B. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1312–1321

    Article  CAS  Google Scholar 

  4. Zhao H P, Liu L, Fang Y G, Vellacheri R, Lei Y. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance. Frontiers of Chemical Science and Engineering, 2018, 12(3): 339–345

    Article  CAS  Google Scholar 

  5. Astratine L, Magner E, Cassidy J, Betts A. Electrodeposition and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration. Electrochimica Acta, 2014, 115: 440–448

    Article  CAS  Google Scholar 

  6. Zainudeen U L, Careem M A, Skaarup S. PEDOT and PPy conducting polymer bilayer and trilayer actuators. Sensors and Actuators B: Chemical, 2008, 134(2): 467–470

    Article  CAS  Google Scholar 

  7. Li Y F, Qian R Y. Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions. Electrochimica Acta, 2000, 45(11): 1727–1731

    Article  CAS  Google Scholar 

  8. Wang D T, Pillier F, Cachet H, Debiemme-Chouvy C. One-pot electrosynthesis of ultrathin overoxidized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2022, 401: 139472–139480

    Article  CAS  Google Scholar 

  9. Bull R A, Fan F R F, Bard A J. Polymer films on electrodes: VII. Electrochemical behavior at polypyrrole-coated platinum and tantalum electrodes. Journal of the Electrochemical Society, 1982, 129(5): 1009–1015

    Article  CAS  Google Scholar 

  10. Du X, Wang Z. Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochimica Acta, 2003, 48(12): 1713–1717

    Article  CAS  Google Scholar 

  11. Debiemme-Chouvy C, Tran T T M. An insight into the overoxidation of polypyrrole materials. Electrochemistry Communications, 2008, 10(6): 947–950

    Article  CAS  Google Scholar 

  12. Lin J M, Su Y L, Chang W T, Su W Y, Cheng S H. Strong adsorption characteristics of a novel overoxidized poly(3,4-ethylenedioxythiophene) film and application for dopamine sensing. Electrochimica Acta, 2014, 149: 65–75

    Article  CAS  Google Scholar 

  13. Amanchukwu C V, Gauthier M, Batcho T P, Symister C, Shao-Horn Y, D’Arcy J M, Hammond P T. Evaluation and stability of PEDOT polymer electrodes for Li−O2 Batteries. Journal of Physical Chemistry Letters, 2016, 7(19): 3770–3775

    Article  CAS  PubMed  Google Scholar 

  14. Gao Z Q, Zi M X, Chen B S. The influence of overoxidation treatment on the permeability of polypyrrole films. Journal of Electroanalytical Chemistry, 1994, 373(1–2): 141–148

    Article  CAS  Google Scholar 

  15. Peairs M J, Ross A E, Venton B J. Comparison of nafion- and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection. Analytical Methods, 2011, 3(10): 2379–2385

    Article  CAS  Google Scholar 

  16. Ozcan A, Ilkbas S. Preparation of poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Analytica Chimica Acta, 2015, 891: 312–320

    Article  CAS  PubMed  Google Scholar 

  17. Ujvari M, Láng G G, Vesztergom S, Szekeres K J, Kovács N, Gubicza J. Structural changes during the overoxidation of electrochemically deposited poly(3,4-ethylenedioxythiophene) films. Journal of Electrochemical Science and Engineering, 2016, 6(1): 77–89

    Article  CAS  Google Scholar 

  18. Hui Y, Bian C, Wang J, Tong J, Xia S. Comparison of two types of overoxidized PEDOT films and their application in sensor fabrication. Sensors, 2017, 17(3): 628–638

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shetti N P, Mishra A, Basu S, Mascarenhas R J, Kakarla R R, Aminabhavi T M. Skin-patchable electrodes for biosensor applications: a review. ACS Biomaterials Science & Engineering, 2020, 6(4): 1823–1835

    Article  CAS  Google Scholar 

  20. Ganeshpurkar A, Saluja A K. The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 2017, 25(2): 149–164

    Article  PubMed  Google Scholar 

  21. Gao F, Tu X L, Ma X, Xie Y, Zou J, Huang X G, Qu F L, Yu Y F, Lu L M. NiO@Ni-MOF nanoarrays modified Ti mesh as ultrasensitive electrochemical sensing platform for luteolin detection. Talanta, 2020, 215: 120891–120898

    Article  CAS  PubMed  Google Scholar 

  22. Meng R Q, Li Q L, Zhang S J, Tang J K, Ma C L, Jin R Y. GQDs/PEDOT bilayer films modified electrode as a novel electrochemical sensing platform for rutin detection. International Journal of Electrochemical Science, 2019, 14(12): 11000–11011

    Article  CAS  Google Scholar 

  23. Kulkarni D R, Malode S J, Keerthi Prabhu K, Ayachit N H, Kulkarni R M, Shetti N P. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Materials Chemistry and Physics, 2020, 246: 122791–122799

    Article  CAS  Google Scholar 

  24. Nespurek S, Kubersky P, Polansky R, Trchova M, Sebera J, Sychrovsky V. Raman spectroscopy and DFT calculations of PEDOT:PSS in a dipolar field. Physical Chemistry Chemical Physics, 2021, 24(1): 541–550

    Article  PubMed  Google Scholar 

  25. Zhang J H, She Y B. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1052–1064

    Article  CAS  Google Scholar 

  26. Láng G G, Ujvári M, Vesztergom S, Kondratiev V, Gubicza J, Szekeres K J. The electrochemical degradation of poly(3,4-ethylenedioxythiophene) films electrodeposited from aqueous solutions. Zeitschrift für Physikalische Chemie, 2016, 230(9): 1281–1302

    Article  Google Scholar 

  27. Ujvári M, Gubicza J, Kondratiev V, Szekeres K J, Láng G G. Morphological changes in electrochemically deposited poly(3,4-ethylenedioxythiophene) films during overoxidation. Journal of Solid State Electrochemistry, 2015, 19(4): 1247–1252

    Article  Google Scholar 

  28. Debiemme-Chouvy C. One-step electrochemical synthesis of a very thin overoxidized polypyrrole film. Electrochemical and Solid-State Letters, 2007, 10(12): E24–E26

    Article  CAS  Google Scholar 

  29. Farrington A M, Slater J M. Prediction and characterization of the charge/size exclusion properties of over-oxidized poly(pyrrole) films. Electroanalysis, 1997, 9(11): 843–847

    Article  CAS  Google Scholar 

  30. Anson F C. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo) tetracetate on mercury electrodes. Analytical Chemistry, 1964, 36(4): 932–934

    Article  CAS  Google Scholar 

  31. Velasco J G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis, 1997, 9(11): 880–882

    Article  Google Scholar 

  32. Ouyang J Y, Xu Q F, Chu C W, Yang Y, Li G, Shinar J. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004, 45(25): 8443–8450

    Article  CAS  Google Scholar 

  33. Marciniak S, Crispin X, Uvdal K, Trzcinski M, Birgerson J, Groenendaal L, Louwet F, Salaneck W R. Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synthetic Metals, 2004, 141(1–2): 67–73

    Article  CAS  Google Scholar 

  34. Lan M H, Zhang J F, Chui Y S, Wang H, Yang Q D, Zhu X Y, Wei H X, Liu W M, Ge J H, Wang P F, Chen X, Lee C S, Zhang W. A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(1): 127–134

    Article  CAS  PubMed  Google Scholar 

  35. Qiao Y S, Shen L Z, Wu M X, Guo Y, Meng S M. A novel chemical synthesis of bowl-shaped polypyrrole particles. Materials Letters, 2014, 126: 185–188

    Article  CAS  Google Scholar 

  36. Zhang J T, Zhao X S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. Journal of Physical Chemistry C, 2012, 116(9): 5420–5426

    Article  CAS  Google Scholar 

  37. Wen P, Tan C H, Zhang J C, Meng F B, Jiang L, Sun Y H, Chen X D. Chemically tunable photoresponse of ultrathin polypyrrole. Nanoscale, 2017, 9(23): 7760–7764

    Article  CAS  PubMed  Google Scholar 

  38. Ivanko I, Svoboda J, Lukešová M, Šeděnková I, Tomšík E. Hydrogen bonding as a tool to control chain structure of PEDOT: electrochemical synthesis in the presence of different electrolytes. Macromolecules, 2020, 53(7): 2464–2473

    Article  CAS  Google Scholar 

  39. Blacha A, Koscielniak P, Sitarz M, Szuber J, Zak J. Pedot brushes electrochemically synthesized on thienyl-modified glassy carbon surfaces. Electrochimica Acta, 2012, 62: 441–446

    Article  CAS  Google Scholar 

  40. Kulandaivalu S, Zainal Z, Sulaiman Y. Influence of monomer concentration on the morphologies and electrochemical properties of PEDOT, PANI, and PPy prepared from aqueous solution. International Journal of Polymer Science, 2016, 2016: 1–12

    Article  Google Scholar 

  41. Culebras M, Gómez C M, Cantarero A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(26): 10109–10115

    Article  CAS  Google Scholar 

  42. Chen F E, Shi G Q, Fu M X, Qu L T, Hong X Y. Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film. Synthetic Metals, 2003, 132(2): 125–132

    Article  CAS  Google Scholar 

  43. Rodriguez-Jimenez S, Bennington M S, Akbarinejad A, Tay E J, Chan E W C, Wan Z, Abudayyeh A M, Baek P, Feltham H L C, Barker D, Gordon K C, Travas-Sejdic J, Brooker S. Electroactive metal complexes covalently attached to conductive PEDOT films: a spectroelectrochemical study. ACS Applied Materials & Interfaces, 2021, 13(1): 1301–1313

    Article  CAS  Google Scholar 

  44. Santos M J L, Brolo A G, Girotto E M. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica Acta, 2007, 52(20): 6141–6145

    Article  CAS  Google Scholar 

  45. Mathys G I, Truong V T. Spectroscopic study of thermooxidative degradation of polypyrrole powder by FT-IR. Synthetic Metals, 1997, 89(2): 103–109

    Article  CAS  Google Scholar 

  46. Song J C, Noh H J, Lee J H, Nah I W, Cho W I, Kim H T. In situ coating of poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries. Journal of Power Sources, 2016, 332: 72–78

    Article  CAS  Google Scholar 

  47. Han Y Q, Shen M X, Wu Y, Zhu J J, Ding B, Tong H, Zhang X G. Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synthetic Metals, 2013, 172: 21–27

    Article  CAS  Google Scholar 

  48. Xie H, Yan M M, Jiang Z Y. Transition of polypyrrole from electroactive to electroinactive state investigated by use of in situ FTIR spectroscopy. Electrochimica Acta, 1997, 42(15): 2361–2367

    Article  CAS  Google Scholar 

  49. Coleone A P, Lascane L G, Batagin-Neto A. Polypyrrole derivatives for optoelectronic applications: a DFT study on the influence of side groups. Physical Chemistry Chemical Physics, 2019, 21(32): 17729–17739

    Article  CAS  PubMed  Google Scholar 

  50. Wasim F, Kosar N, Mahmood T, Ayub K. Sensor applications of polypyrrole for oxynitrogen analytes: a DFT study. Journal of Molecular Modeling, 2018, 24(11): 308–322

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the support of the Key Research and Development (R&D) Projects of Shanxi Province (Grant No. 201903D121114). This project is also supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0667).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoling Li or Yulan Niu.

Electronic Supplementary Material

11705_2022_2262_MOESM1_ESM.pdf

Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, R., Tang, J., Yang, H. et al. Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination. Front. Chem. Sci. Eng. 17, 735–748 (2023). https://doi.org/10.1007/s11705-022-2262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2262-z

Keywords

Navigation