Skip to main content
Log in

The influence of ethylene glycol-based solvents on the morphological and supercapacitive properties of hydrothermalized δ-Bi2O3 with additional Bi2O2CO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A Bi2O3 is a promising material for a supercapacitor negative electrode. A typical surfactant for synthesizing Bi2O3 via a hydrothermal method is ethylene glycol (EG); however, polyethylene glycol (PEG) has not been employed. In this study, three different glycol-based surfactants including EG, PEG400, and PEG600 were compared based on their effects on the phase, morphology, and supercapacitive properties of hydrothermal Bi2O3 (160 °C, 3 h). Along with δ-Bi2O3, Bi2O2CO3 also formed. The as-synthesized δ-Bi2O3/Bi2O2CO3 (BiEG, BiPEG400, and BiPEG600) had different morphological features but these structures were altered after grinding. Increasing the molecular weight of the surfactant reduced the carbonate phase, providing better connectivity between the electrode material and the current collector as well as lowering a charge transfer resistance. As a result, the BiPEG600 electrode exhibited the best electrochemical properties in terms of capacitance and retention. This also highlighted the importance of charge transfer and morphology, which overshadowed the Brunauer–Emmett–Teller (BET) surface area. Specifically, the BiPEG600 capacitance was 969 F g−1 at 1 A g−1, and was retained at 46% after 2000 cycles at 50 A g−1. Promising specific capacitances  obtained at high discharge rates of 50 and 60 A g−1 were 436 and 381 F g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data consisted of manuscripts and supplementary information. Moreover, Data available by sending on e-mail to K. Moolsarn (klitsada_moolsarn@kkumail.com) and A. Tangtrakarn* corresponding author (nateta@kkumail.ac.th) ORCID: 0000-0002-8351-5215.

References

  1. V.R. Shinde, S.B. Mahadik, T.P. Gujar, C.D. Lokhand, Appl. Surf. Sci. 252, 7487 (2006)

    Article  CAS  Google Scholar 

  2. A.J. Roberts, R.C.T. Slade, J. Mater. Chem. 20, 3221 (2010)

    Article  CAS  Google Scholar 

  3. K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, C.I. Chang, J. Power Sources 196, 2387 (2011)

    Article  CAS  Google Scholar 

  4. S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interfaces 5, 1596 (2013)

    Article  CAS  Google Scholar 

  5. M. Selvakumar, D.K. Bhat, Appl. Surf. Sci. 263, 236 (2012)

    Article  CAS  Google Scholar 

  6. N.A. Devi, S. Sinha, S. Nongthombam, B.P. Swain, Mater. Sci. Semicond. 137, 106212 (2022)

    Article  CAS  Google Scholar 

  7. T. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, Adv. Sci. 2, 1600289 (2017)

    Article  Google Scholar 

  8. M. Kumar, D.I. Jeong, N. Sarwar, D.H. Yoon, Heazlewoodite. Ceram. Int. 47, 16852 (2021)

    Article  CAS  Google Scholar 

  9. W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, ACS Appl. Mater. Interfaces 6, 19318 (2014)

    Article  CAS  Google Scholar 

  10. J.F. Ni, X.X. Bi, Y. Jiang, L. Li, J. Lu, Nano Energy 34, 356 (2017)

    Article  CAS  Google Scholar 

  11. X. Yu, J. Sun, W. Zhao, S. Zhao, H. Chen, K. Tao, Y. Hu, L. Han, RSC Adv. 10, 14107 (2020)

    Article  CAS  Google Scholar 

  12. B.G. Ghule, N.M. Shinde, Y.T. Nakate, J.H. Jang, R.S. Mane, Colloids Surf. A Physicochem. Eng. Asp. 651, 129690 (2022)

    Article  CAS  Google Scholar 

  13. J. Xu, Z. Meng, Z. Hao, X. Sun, H. Nan, H. Liu, Y. Wang, W. Shi, H. Tian, X. Hu, J. Colloid Interface Sci. 609, 878 (2022)

    Article  CAS  Google Scholar 

  14. S.A. Mane, A.A. Kashale, G.P. Kamble, S.S. Kolekar, S.D. Dhas, M.D. Patil, A.V. Moholkar, B.R. Sathe, A.V. Ghule, J. Alloys Compds. 926, 166722 (2022)

    Article  CAS  Google Scholar 

  15. N.A. Devi, S. Sinha, S. Nongthombam, B.P. Swain, Mater. Sci. Semicond. Process. 137, 106212 (2022)

    Article  CAS  Google Scholar 

  16. S. Yang, Y. Ping, L. Qian, J. Han, B. Xiong, J. Li, P. Fang, C. He, J. Mater. Sci.: Mater. Electron. 31, 2221 (2020)

    CAS  Google Scholar 

  17. J. Sun, J. Wang, Z. Li, Z. Yang, S. Yang, RSC Adv. 5, 51773 (2015)

    Article  CAS  Google Scholar 

  18. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Beguina, J. Electrochem. Soc. 152, 229 (2005)

    Article  Google Scholar 

  19. T. Qin, X. Zhang, D. Wang, T. Deng, H. Wang, X. Liu, X. Shi, Z. Li, H. Chen, X. Meng, W. Zhang, W. Zheng, ACS Appl. Mater. Interfaces 11, 2103 (2019)

    Article  CAS  Google Scholar 

  20. B. Wang, J. Wang, Y. Zhang, Y. Mei, P. Lian, Ceram. Int. 43, 9310 (2017)

    Article  CAS  Google Scholar 

  21. Z. Wu, D. Zeng, X. Liu, C. Yu, K. Yang, M. Liu, Res. Chem. Intermed. 44, 5995 (2018)

    Article  CAS  Google Scholar 

  22. H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, ACS Catal. 5, 4094 (2015)

    Article  CAS  Google Scholar 

  23. F. Dong, Y.J. Sun, M. Fu, W.K. Ho, S.C. Lee, Z.B. Wu, Langmuir 28, 766 (2012)

    Article  CAS  Google Scholar 

  24. A.K. Das, N.H. Kim, S.H. Lee, Y. Sohn, J.H. Lee, Compos. B. Eng. 150, 234 (2018)

    Article  CAS  Google Scholar 

  25. N.M. Shinde, Q.X. Xia, J.M. Yun, R.S. Mane, K.H. Kim, ACS Appl. Mater. Interfaces 10, 11037 (2018)

    Article  CAS  Google Scholar 

  26. M. Berouaken, C. Yaddaden, H. Ferdjouni, C. Torki, M. Maoudj, K. Chebout, M. Ayat, H. Menari, A. Manseri, N. Gabouze, Appl. Phys. A 128, 653 (2022)

    Article  CAS  Google Scholar 

  27. C. Yang, Q. Jia, Q. Pan, W. Qi, R. Ling, B. Cao, Nanoscale Adv. 3, 593 (2021)

    Article  CAS  Google Scholar 

  28. A. Phakkhawan, P. Suksangrat, P. Srepusharawoot, S. Ruangchai, P. Klangtakai, S. Pimanpang, V. Amornkitbamrung, J. Alloys Compds. 919, 165702 (2022)

    Article  CAS  Google Scholar 

  29. L. Gurusamy, S. Anandan, J.J. Wu, Electrochim. Acta. 244, 209 (2017)

    Article  CAS  Google Scholar 

  30. N.M. Shinde, Q.X. Xia, J.M. Yun, P.V. Shinde, S. Shaikh, R.K. Sahoo, S. Mathur, R.S. Mane, K.H. Kim, Electrochim. Acta. 296, 308 (2019)

    Article  CAS  Google Scholar 

  31. Z. Zhang, Q. Zheng, L. Sun, Ceram. Int. 43, 16217 (2017)

    Article  CAS  Google Scholar 

  32. V. Vivier, A. Regis, G. Sagon, J.Y. Nedelec, L.T. Yu, C. Cachet-Vivier, Electrochim. Acta. 46, 907 (2001)

    Article  CAS  Google Scholar 

  33. V. Vivier, C. Cachet-Vivier, S. Mezaille, B.L. Wu, C.S. Cha, J.-Y. Nedelec, M. Fedoroff, D. Michel, L.T. Yu, J. Electrochem. Soc. 147, 4252 (2000)

    Article  CAS  Google Scholar 

  34. B. Akinwolemiwa, C. Peng, G.Z. Chen, J. Electrochem. Soc. 162, A5054 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research and Graduate Studies, Khon Kaen University, Science Achievement Scholarship of Thailand (SAST), Support by the Research and Graduate Studies, Khon Kaen University, Thailand Center of Excellence in Physics (TheP), P.O.Box 70, Chiang Mai University, Chiang Mai 50202, Thailand.

Funding

Funding was provided by Research and Graduate Studies, Khon Kaen University, Science Achievement Scholarship of Thailand (SAST) (1). Support by the Research and Graduate Studies, Khon Kaen University (2). Thailand Center of Excellence in Physics (TheP), P.O.Box 70, Chiang Mai University, Chiang Mai 50202, Thailand (3).

Author information

Authors and Affiliations

Authors

Contributions

KM: designed the experiments, carried out the experiments, analyzed the results, as well as prepared the manuscript. AT: directed this research, discussed the results and wrote the manuscript. KEA: discussed the results and wrote the manuscript. AP partially provided guidance for electrode preparation. KD: partially discussed certain results. AP: provide support for the setup of electrochemical equipment. PK checked the validity of the discussion. SP: checked the validity of the discussion. CP: assisted with Raman and quantitative FTIR analysis.

Corresponding author

Correspondence to Apishok Tangtrakarn.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moolsarn, K., Aifantis, K.E., Phakkhawan, A. et al. The influence of ethylene glycol-based solvents on the morphological and supercapacitive properties of hydrothermalized δ-Bi2O3 with additional Bi2O2CO3. J Mater Sci: Mater Electron 34, 1324 (2023). https://doi.org/10.1007/s10854-023-10671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10671-9

Navigation