Skip to main content
Log in

Flaky FeSiAl powders with high permeability towards broadband microwave absorption through tuning aspect ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optimizing aspect ratio of flaky powder plays a crucial role in improving broadband microwave absorption performance. Herein, the aspect ratio of flaky FeSiAl powder has been successfully controlled through changing the ball-powder ratio. And with the increment of ball-powder ratio, the aspect ratio of flaky FeSiAl powder basically increases until the ball-powder ratio is higher than 20:1. It is also proved that annealing can effectively increase crystallinity, release internal stress, and promote crystal growth. Due to variable aspect ratio, flaky FeSiAl powders show different electromagnetic properties. In MHz range, the permeability increases with the aspect ratio of the flaky FeSiAl. In GHz range, higher aspect ratio would lead to higher permittivity, which should be ascribed to increased conductivity and enhanced polarization. Meanwhile, moderate aspect ratio results in strongest magnetic loss at lower frequency and low aspect ratio brings about strongest magnetic loss at higher frequency. Although attenuation capability of FeSiAl powders would be enhanced with large aspect ratio, their impedance matching performance would also gradually deteriorate. Consequently, only appropriate aspect ratio can give rise to promising microwave absorption performance. In this work, flake FeSiAl powder with a proper aspect ratio of ~ 3:1 exhibits a broad effective absorption bandwidth of 6.08 GHz at 2.15 mm. This work may provide novel reference for the synthesis and application of flaky metallic powders as broadband microwave absorbing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C.L. Lei, C.N. Ge, X. Ge et al., Enhanced microwave absorption of flaky FeSiAl/ZnO composites fabricated via precipitation. Mater. Sci. Eng. B 275, 115502 (2022). https://doi.org/10.1016/j.mseb.2021.115502

    Article  CAS  Google Scholar 

  2. L. Zhou, H. Xu, G.X. Su et al., Tunable electromagnetic and broadband microwave absorption of SiO2-coated FeSiAl absorbents. J. Alloys Compd. 861, 157966 (2021). https://doi.org/10.1016/j.jallcom.2020.157966

    Article  CAS  Google Scholar 

  3. Y. Zhu, G.Z. Xie, N.Y. Xie et al., Electromagnetic properties of Sm-doped FeSiAl alloy absorbing materials prepared by melt spinning. Mater. Sci. Technol. 38, 419–424 (2022). https://doi.org/10.1080/02670836.2022.2045548

    Article  CAS  Google Scholar 

  4. Y. Guo, X. Jian, L. Zhang et al., Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020). https://doi.org/10.1016/j.cej.2019.123371

    Article  CAS  Google Scholar 

  5. L. Feng, W.C. Li, Y. Wang, Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy. J. Magn. Magn. Mater. 541, 168510 (2022). https://doi.org/10.1016/j.jmmm.2021.168510

    Article  CAS  Google Scholar 

  6. X.Z. Zhang, Y. Guo, R. Ali et al., Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloys Compd. 828, 154079 (2020). https://doi.org/10.1016/j.jallcom.2020.154079

    Article  CAS  Google Scholar 

  7. H.Y. Wei, Z.P. Zhang, G. Hussain et al., Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today. 19, 100596 (2020). https://doi.org/10.1016/j.apmt.2020.100596

    Article  Google Scholar 

  8. K. Baek, S.G. Doh, W. Jeong et al., Subwavelength electromagnetic wave absorption with ferroelectric particles that enhance the magnetic permeability in magnetodielectric composites. J. Alloys Compd. 867, 159075 (2021). https://doi.org/10.1016/j.jallcom.2021.159075

    Article  CAS  Google Scholar 

  9. Y.W. Zhao, X.K. Zhang, J.Q. Xiao, Sub micrometer laminated Fe/SiO2 soft magnetic composites-an effective route to materials for high-frequency applications. Adv. Mater. 17, 915–918 (2005). https://doi.org/10.1002/adma.200401096

    Article  CAS  Google Scholar 

  10. M.G. Han, D.F. Liang, J.L. Xie et al., Effect of attrition time on the microwave permeability of magnetic Fe-Si-Al flakes. J. Appl. Phys. 111, 07A317 (2012). https://doi.org/10.1063/1.3673813

    Article  CAS  Google Scholar 

  11. Z.Q. Zhang, J.Q. Wei, W.F. Yang et al., Effect of shape of Sendust particles on their electromagnetic properties within 0.1–18 GHz range. Phys. B 406, 3896–3900 (2011). https://doi.org/10.1016/j.physb.2011.07.019

    Article  CAS  Google Scholar 

  12. J.W. Hu, S.C. Liu, Y. Wang et al., Manganese phosphate coated flaky FeSiAl powders with enhanced microwave absorbing properties and improved corrosion resistance. Mater. Chem. Phys. 296, 127274 (2023). https://doi.org/10.1016/j.matchemphys.2022.127274

    Article  CAS  Google Scholar 

  13. H.Y. Li, H. Cheng, H.J. Liu et al., Carbon nanotubes/FeSiAl hybrid flake for enhanced microwave absorption properties. J. Electron. Mater. 51, 6986–6994 (2022). https://doi.org/10.1007/s11664-022-09928-6

    Article  CAS  Google Scholar 

  14. J. He, L.W. Deng, S. Liu et al., Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl. J. Magn. Magn. Mater. 444, 49–53 (2017). https://doi.org/10.1016/j.jmmm.2017.07.097

    Article  CAS  Google Scholar 

  15. R.J. Mao, S.S. Bao, Q.S. Li et al., Rational design of two-dimensional flaky Fe/void/C composites for enhanced microwave absorption properties. Dalton Trans. 51, 8705 (2022). https://doi.org/10.1039/d2dt01065h

    Article  CAS  Google Scholar 

  16. W.H. Gu, X.Q. Cui, J. Zheng et al., Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054

    Article  CAS  Google Scholar 

  17. X.G. Sun, Y. Liu, D.T. Kuang et al., Hard carbon embedded with FeSiAl flakes for improved microwave absorption properties. Materials. 15, 6068 (2022). https://doi.org/10.3390/ma15176068

    Article  CAS  Google Scholar 

  18. H.B. Xu, S.W. Bie, J.J. Jiang et al., Electromagnetic and microwave absorbing properties of the composites containing flaky FeSiAl powders mixed with MnO2 in 1–18 GHz. J. Magn. Magn. Mater. 401, 567–571 (2016). https://doi.org/10.1016/j.jmmm.2015.10.093

    Article  CAS  Google Scholar 

  19. Z.J. Li, H. Lin, Y.X. Xie et al., Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 124, 182–192 (2022). https://doi.org/10.1016/j.jmst.2022.03.004

    Article  Google Scholar 

  20. T.D. Zhou, P.H. Zhou, D.F. Liang et al., Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt-quenching. J. Alloys Compd. 484, 545–549 (2009). https://doi.org/10.1016/j.jallcom.2009.04.145

    Article  CAS  Google Scholar 

  21. S. Woo, C.S. Yoo, H. Kim et al., Effects of the morphology of CIPs on microwave absorption behaviors. Electron. Mater. Lett. 13, 471–477 (2017). https://doi.org/10.1007/s13391-017-7002-z

    Article  CAS  Google Scholar 

  22. X.F. Niu, The study on order behavior and electronic structure of flaky FeSiAl powder. J. Magn. Magn. Mater. 493, 165725 (2020). https://doi.org/10.1016/j.jmmm.2019.165725

    Article  CAS  Google Scholar 

  23. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012). http://www.jtaphys.com/content/2251-7235/6/1/6

    Article  Google Scholar 

  24. X.Z. Zhang, D.F. Liang, X. Wang et al., The evolution of microstructure and magnetic properties of Fe-Si-Cr powders on ball-milling process. J. Alloys Compd. 582, 558–562 (2014). https://doi.org/10.1016/j.jallcom.2013.08.060

    Article  CAS  Google Scholar 

  25. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (John Wiley & Sons, Inc, New York, 2009)

    Google Scholar 

  26. H. Zhang, X. Zhu, X.B. Zhang et al., Great reduction in pressure by particle grading for Fe-Si-Al SMCs with good low-frequency magnetic properties. J. Magn. Magn. Mater. 555, 169325 (2022). https://doi.org/10.1016/j.jmmm.2022.169325

    Article  CAS  Google Scholar 

  27. K. Wan, W. Liu, Y. Ding et al., Comparative investigation of insulation techniques based on APTES for different structures and magnetic properties of soft magnetic composites. J. Magn. Magn. Mater. 571, 170571 (2023). https://doi.org/10.1016/j.jmmm.2023.170571

    Article  CAS  Google Scholar 

  28. G.Z. Shen, B.Q. Mei, H.Y. Wu et al., Microwave electromagnetic and absorption properties of N-doped ordered mesoporous carbon decorated with ferrite nanoparticles. J. Phys. Chem. C 121, 3846–3853 (2017). https://doi.org/10.1021/acs.jpcc.6b10906

    Article  CAS  Google Scholar 

  29. R.B. Yang, W.F. Liang, Microwave absorbing characteristics of flake-shaped FeNiMo/epoxy composites. J. Appl. Phys. 113, 17A315 (2013). https://doi.org/10.1063/1.4794721

    Article  CAS  Google Scholar 

  30. C. Feng, X.G. Liu, S. Wing et al., Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules. AIP Adv. 7, 056403 (2017). https://doi.org/10.1063/1.4972805

    Article  CAS  Google Scholar 

  31. P.B. Liu, S. Gao, Y. Wang et al., Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon. 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043

    Article  CAS  Google Scholar 

  32. W. Liu, P.T. Duan, Y. Ding et al., One-dimensional MOF-derived magnetic composites for efficient microwave absorption at ultralow thickness through controllable hydrogen reduction. Dalton Trans. 51, 6597–6606 (2022). https://doi.org/10.1039/d2dt00113f

    Article  CAS  Google Scholar 

  33. J.L. Tang, L. Zhong, R.Y. Yang et al., Optimizing low frequency electromagnetic parameters by controlling the distribution of boron in FeSiAl alloy. J. Magn. Magn. Mater. 558, 169535 (2022). https://doi.org/10.1016/j.jmmm.2022.169535

    Article  CAS  Google Scholar 

  34. N. He, M.M. Liu, J.Y. Qi et al., Plasmon resonance strategy to enhance permittivity and microwave absorbing performance of Cu/C core-shell nanowires. Chem. Eng. J. 378, 122160 (2019). https://doi.org/10.1016/j.cej.2019.122160

    Article  CAS  Google Scholar 

  35. H.Q. Zhao, Y. Cheng, W. Liu et al., The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology. 29, 295603 (2018). https://doi.org/10.1088/1361-6528/aac0de

    Article  CAS  Google Scholar 

  36. L. Wang, X. Li, X.F. Shi et al., Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale. 13, 2136–2156 (2021). https://doi.org/10.1039/d0nr06267g

    Article  CAS  Google Scholar 

  37. X. Yan, X.Y. Mu, Q.S. Zhang et al., A study on the static magnetic and electromagnetic properties of silica-coated carbonyl iron powder after heat treatment for improving thermal stability. Materials. 15, 2499 (2022). https://doi.org/10.3390/ma15072499

    Article  CAS  Google Scholar 

  38. X.C. Zhang, Y.N. Shi, J. Xu et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14, 27 (2022). https://doi.org/10.1007/s40820-021-00773-6

    Article  CAS  Google Scholar 

  39. H.S. Liang, H. Xing, Z.H. Ma et al., Tailoring high-electroconductivity carbon cloth coated by nickel cobaltate/nickel oxide: a case of transition from microwave shielding to absorption. Carbon. 183, 138–149 (2021). https://doi.org/10.1016/j.carbon.2021.07.002

    Article  CAS  Google Scholar 

  40. Z.C. Lou, Q.Y. Wang, X.D. Zhou et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 113, 33–39 (2022). https://doi.org/10.1016/j.jmst.2021.11.007

    Article  Google Scholar 

  41. H.L. Lv, Z.H. Yang, H.B. Xu et al., An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30, 1907251 (2019). https://doi.org/10.1002/adfm.201907251

    Article  CAS  Google Scholar 

  42. Y. Zhang, T.D. Zhou, Structure and electromagnetic properties of FeSiAl particles coated by MgO. J. Magn. Magn. Mater. 426, 680–684 (2017). https://doi.org/10.1016/j.jmmm.2016.10.144

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Major Project of Science and Technology Innovation 2025 in Ningbo City, China (No. 2020Z062), the Huaian Key Research & Development Plan (No. HAG 202114) and Grant Project of Shenzhen Microgate Technology Co. Ltd (2021–2024).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization and methodology were proposed by HS, WL and ZC. Material preparation and data collection were performed by ZC, ML, XZ, JW and XZ. The first draft and review of the manuscript were completed by ZC, WL, HS and XZ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Liu, Hailin Su or Jinzhi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5308.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Liu, W., Li, M. et al. Flaky FeSiAl powders with high permeability towards broadband microwave absorption through tuning aspect ratio. J Mater Sci: Mater Electron 34, 1249 (2023). https://doi.org/10.1007/s10854-023-10668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10668-4

Navigation