Skip to main content
Log in

Investigation of ultrathin yttrium silicide for NMOS source/drain contacts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Compared to Ti, yttrium (Y) has lower work function and higher effective mass, and Y silicide appears as one of the best candidates for NMOS source/drain contacts. In this work, ultrathin (≤ 5 nm) Y films are employed as interlayer between Ti and n+-Si to form ultrathin YSix/n+-Si contacts, while ultrathin TiSix/n+-Si contact is also fabricated as reference. The YSix/n+-Si and TiSix/n+-Si contacts are investigated in terms of specific contact resistivity (ρc). Also, as-formed YSix/n+-Si contacts with various Y thicknesses as well as TiSix/n+-Si contact were characterized by means of cross-sectional transmission electron microscopy (XTEM), energy dispersive X-ray spectroscopy (EDX), as well as secondary ion mass spectroscopy (SIMS). Compared to TiSix/n+-Si contact, YSix/n+-Si contacts show higher ρc, owing to the incorporation of oxygen into YSix/n+-Si contacts, reduction of P concentration at YSix/n+-Si interface and grooving of poly-YSix. As for TiN(3 nm)/Ti(5 nm)/Y/n+-Si contacts with different Y thicknesses, formation of YSixOy films is observed, which indicates that O contamination deteriorates seriously ρc of YSix/n+-Si contacts. Furthermore, one effective way to reduce O contamination is provided, i.e., thickening Ti layer, leading to an appreciable reduction of ρc for YSix/n+-Si contact by about one order of magnitude. Although ρc of YSix/n+-Si contact is higher than control TiSix/n+-Si contact, this work provides experimental evaluation of ultrathin YSix to help establish ρc reduction strategies for advanced CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Yu, M. Schaekers, J.-L. Everaert, N. Horiguchi, K. De Meyer, N. Collaert, MRS Adv. (2022). https://doi.org/10.1557/s43580-022-00404-1

    Article  Google Scholar 

  2. H. Xu, R. Khazaka, J. Zhang, Z. Zheng, Y. Chen, X. Gong, in “2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)”, p. 367–368, 2022

  3. S. Mao, J. Luo, J. Phys. D 52(50), 503001 (2019). https://doi.org/10.1088/1361-6463/ab3dc9

    Article  CAS  Google Scholar 

  4. H. Yu, M. Schaekers, A. Peter, G. Pourtois, E. Rosseel, J.G. Lee, W.B. Song, K.M. Shin, J.L. Everaert, S.A. Chew, S. Demuynck, D. Kim, K. Barla, A. Mocuta, N. Horiguchi, A.V.Y. Thean, N. Collaert, K.D. Meyer, IEEE Trans. Electron. Devices. 63(12), 4632–4641 (2016). https://doi.org/10.1109/TED.2016.2616587

    Article  CAS  Google Scholar 

  5. D. Zhang, C. Zhao, J. Xu, J. Gao, J. Liu, Y. Liu, M. Li, X. Zhou, X. Sun, Y. Li, J. Li, W. Wang, D. Chen, T. Ye, J. Luo, IEEE Electron Device Lett. 42(7), 958–961 (2021). https://doi.org/10.1109/LED.2021.3081701

    Article  CAS  Google Scholar 

  6. N. Breil, in “2021 IEEE International Interconnect Technology Conference (IITC)”, p. 1–3, 2021

  7. Y. Liu, J. Xu, J. Gao, J. Liu, D. Zhang, X. Zhou, X. Sun, Y. Li, J. Li, C. Zhao, W. Wang, D. Chen, T. Ye, J. Luo, J. Mater. Sci.: Mater. Electron. 32(19), 24107–24114 (2021). https://doi.org/10.1007/s10854-021-06874-7

    Article  CAS  Google Scholar 

  8. S. Mao, G. Wang, J. Xu, X. Luo, D. Zhang, N. Duan, S. Liu, W. Wang, D. Chen, J. Li, C. Zhao, T. Ye, J. Luo, IEEE Trans. Electron. Devices. 65(10), 4490–4498 (2018). https://doi.org/10.1109/TED.2018.2864558

    Article  CAS  Google Scholar 

  9. J. Luo, Z.-J. Qiu, Z. Zhang, M. Östling, S.-L. Zhang, J. Vacuum Sci. Technol. B 28(1), C1I1-C1I11 (2010). https://doi.org/10.1116/1.3248267

    Article  CAS  Google Scholar 

  10. J. Luo, Z. Qiu, C. Zha, Z. Zhang, D. Wu, J. Lu, J. Åkerman, M. Östling, L. Hultman, S.-L. Zhang, Appl. Phys. Lett. 96(3), 031911 (2010). https://doi.org/10.1063/1.3291679

    Article  CAS  Google Scholar 

  11. C. Lavoie, P. Adusumilli, A.V. Carr, J.S. Jordan Sweet, A.S. Ozcan, E. Levrau, N. Breil, E. Alptekin, ECS Trans. 77(5), 59–79 (2017). https://doi.org/10.1149/07705.0059ecst

    Article  CAS  Google Scholar 

  12. H. Yu, L. Wang, M. Schaekers, J. Everaert, Y. Jiang, D. Mocuta, N. Horiguchi, N. Collaert, K.D. Meyer, IEEE Electron Device Lett. 38(7), 843–846 (2017). https://doi.org/10.1109/LED.2017.2700233

    Article  CAS  Google Scholar 

  13. C. Porret, J.L. Everaert, M. Schaekers, L.A. Ragnarsson, A. Hikavyy, E. Rosseel, G. Rengo, R. Loo, R. Khazaka, M. Givens, X. Piao, S. Mertens, N. Heylen, H. Mertens, C.T.D.C. Cavalcante, G. Sterckx, S. Brus, A.N. Mehta, M. Korytov, D. Batuk, P. Favia, R. Langer, G. Pourtois, J. Swerts, E.D. Litta, N. Horiguchi, in “2022 International Electron Devices Meeting (IEDM)”, p. 34.31.31–34.31.34, 2022

  14. P. Adusumilli, E. Alptekin, M. Raymond, N. Breil, F. Chafik, C. Lavoie, D. Ferrer, S. Jain, V. Kamineni, A. Ozcan, S. Allen, J.J. An, V. Basker, R. Bolam, H. Bu, J. Cai, J. Demarest, B. Doris, E. Engbrecht, S. Fan, J. Fronheiser, O. Gluschenkov, D. Guo, B. Haran, D. Hilscher, H. Jagannathan, D. Kang, Y. Ke, J. Kim, S. Koswatta, A. Kumar, A. Labonte, R. Lallement, W. Lee, Y. Lee, J. Li, C. Lin, B. Liu, Z. Liu, N. Loubet, N. Makela, S. Mochizuki, B. Morgenfeld, S. Narasimha, T. Nesheiwat, H. Niimi, C. Niu, M. Oh, C. Park, R. Ramachandran, J. Rice, V. Sardesai, J. Shearer, C. Sheraw, C. Tran, G. Tsutsui, H. Utomo, K. Wong, R. Xie, T. Yamashita, Y. Yan, C. Yeh, M. Yu, N. Zamdmer, N. Zhan, B. Zhang, V. Paruchuri, C. Goldberg, W. Kleemeier, S. Stiffler, R. Divakaruni, W. Henson, in “2016 IEEE Symposium on VLSI Technology”, p. 1–2, 2016

  15. N. Reckinger, X. Tang, V. Bayot, D.A. Yarekha, E. Dubois, S. Godey, X. Wallart, G. Larrieu, A. Łaszcz, J. Ratajczak, P.J. Jacques, J.-P. Raskin, J. Appl. Phys. 104(10), 103523 (2008). https://doi.org/10.1063/1.3010305

    Article  CAS  Google Scholar 

  16. W. Huang, G.-P. Ru, C. Detavernier, R.L. Van Meirhaeghe, Y.-L. Jiang, X.-P. Qu, B.-Z. Li, Microelectron. Eng. 85(1), 131–135 (2008). https://doi.org/10.1016/j.mee.2007.04.144

    Article  CAS  Google Scholar 

  17. Y.-C. Yeo, ECS Trans. 28(1), 91 (2010). https://doi.org/10.1149/1.3375592

    Article  CAS  Google Scholar 

  18. A. Dabral, G. Pourtois, K. Sankaran, W. Magnus, H. Yu, A. de Jamblinne de Meux, A.K.A. Lu, S. Clima, K. Stokbro, M. Schaekers, N. Collaert, N. Horiguchi, M. Houssa, ECS J. Solid State Sci. Technol. 7(6), N73 (2018). https://doi.org/10.1149/2.0041806jss

    Article  CAS  Google Scholar 

  19. T.L. Lee, L.J. Chen, J. Appl. Phys. 75(4), 2007–2014 (1994). https://doi.org/10.1063/1.356300

    Article  CAS  Google Scholar 

  20. T.L. Lee, L.J. Chen, J. Appl. Phys. 73(12), 8258–8266 (1993). https://doi.org/10.1063/1.353444

    Article  CAS  Google Scholar 

  21. G.J. Campisi, A.J. Bevolo, F.A. Schmidt, J. Appl. Phys. 52(11), 6647–6650 (1981). https://doi.org/10.1063/1.328656

    Article  CAS  Google Scholar 

  22. Y. Liu, X. Sun, J. Xu, J. Gao, J. Liu, X. Zhou, Y. Li, J. Li, W. Wang, T. Ye, J. Luo, IEEE Trans. Electron. Devices. 69(6), 3347–3352 (2022). https://doi.org/10.1109/TED.2022.3166719

    Article  CAS  Google Scholar 

  23. W.L. Tan, K.L. Pey, S.Y.M. Chooi, J.H. Ye, T. Osipowicz, J. Appl. Phys. 91(5), 2901–2909 (2002). https://doi.org/10.1063/1.1448672

    Article  CAS  Google Scholar 

  24. Y.-L. Jiang, Q. Xie, C. Detavernier, R.L. Van Meirhaeghe, G.-P. Ru, X.-P. Qu, B.-Z. Li, A. Huang, P.K. Chu, J. Vac. Sci. Technol. A 25(2), 285–289 (2007). https://doi.org/10.1116/1.2464123

    Article  CAS  Google Scholar 

  25. N. Reckinger, C.A. Duţu, X. Tang, E. Dubois, D.A. Yarekha, S. Godey, L. Nougaret, A. Łaszcz, J. Ratajczak, J.P. Raskin, Thin Solid Films. 520(13), 4501–4505 (2012). https://doi.org/10.1016/j.tsf.2012.02.076

    Article  CAS  Google Scholar 

  26. D.G. Kim, H.-R. Kim, D.S. Kwon, J. Lim, H. Seo, T.K. Kim, H. Paik, W. Lee, C.S. Hwang, J. Phys. D 54(18), 185110 (2021). https://doi.org/10.1088/1361-6463/abdefe

    Article  CAS  Google Scholar 

  27. S.A. Chew, H. Yu, M. Schaekers, S. Demuynck, G. Mannaert, E. Kunnen, E. Rosseel, A. Hikavyy, A. Dangol, K.D. Meyer, D. Mocuta, N. Horiguchi, G. Leusink, C. Wajda, T. Hakamata, T. Hasegawa, K. Tapily, R. Clark, in “2017 IEEE International Interconnect Technology Conference (IITC)”, p. 1–3, 2017

  28. T. Isogai, H. Tanaka, T. Goto, A. Teramoto, S. Sugawa, T. Ohmi, Jpn J. Appl. Phys. 47(4), 3138–3141 (2008). https://doi.org/10.1143/jjap.47.3138

    Article  CAS  Google Scholar 

  29. L.J. Chen, Mater. Sci. Eng.: R: Rep 29(5), 115–152 (2000). https://doi.org/10.1016/S0927-796X(00)00023-1

    Article  Google Scholar 

  30. F. Richter, E. Bugiel, H.B. Erzgräber, D. Panknin, J. Appl. Phys. 72(2), 815–817 (1992). https://doi.org/10.1063/1.351821

    Article  CAS  Google Scholar 

  31. S.W. Kang, J.S. Chun, S.C. Park, J. Vac. Sci. Technol. A 7(6), 3246–3250 (1989). https://doi.org/10.1116/1.576343

    Article  CAS  Google Scholar 

  32. R. Pantel, D. Levy, D. Nicolas, J.P. Ponpon, J. Appl. Phys. 62(10), 4319–4321 (1987). https://doi.org/10.1063/1.339062

    Article  CAS  Google Scholar 

  33. L. Wang, H. Yu, M. Schaekers, J. Everaert, D. Mocuta, N. Horiguchi, N. Collaert, K.D. Meyer, Y. Jiang, IEEE Trans. Electron. Devices. 65(5), 1869–1872 (2018). https://doi.org/10.1109/TED.2018.2810319

    Article  CAS  Google Scholar 

  34. K. Nakajima, A. Fujiyoshi, Z. Ming, M. Suzuki, K. Kimura, J. Appl. Phys. 102(6), 064507 (2007). https://doi.org/10.1063/1.2777107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Youth Innovation Promotion Association of CAS (Grant No. Y201926), National Natural Science Foundation of China (Grant No. 21975269), the opening projects of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences and Guangdong Province Research and Development Program in Key Fields (Grant No. 2021B0101280002).

Funding

This study was supported by  Youth Innovation Promotion Association of CAS (Grant No. Y201926),  National Natural Science Foundation of China (Grant No. 21975269),  Key Laboratory of Microelectronic Devices Integrated Technology, Chinese Academy of Sciences (Grant No. 2021B0101280002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by XS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jing Xu or Jun Luo.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Xu, J., Gao, J. et al. Investigation of ultrathin yttrium silicide for NMOS source/drain contacts. J Mater Sci: Mater Electron 34, 1239 (2023). https://doi.org/10.1007/s10854-023-10660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10660-y

Navigation