Skip to main content
Log in

Induced transition from Schottky to ohmic contact in In/n-type Si owing to (NH4)2Sx treatment

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Indium metal is deposited on n-type Si (n-Si) samples with/without (NH4)2Sx treatment in order to experimentally study the mechanism for the transition from Schottky to ohmic contact. Indium metal that is deposited on a n-Si sample that is subject to (NH4)2Sx treatment shows ohmic behavior but indium metal that is deposited on a n-Si sample that is not subject to (NH4)2Sx treatment exhibits Schottky behavior. Using the transmission line method, the specific contact resistance of the In/(NH4)2Sx treated n-Si structure is calculated to be 283.3 mΩ cm2. Experimental identification confirms that the transformation to conduction behavior occurs because of the combined effect of broken Si–O bonds (i.e., the removal of the native oxide) and the formation of Si–Sx2− bonds at the Si surface, which results in a transition from upward to downward surface band bending for n-Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D W Kim, J W Song, H S Jin and B Yoo Mater. Interfaces 11 25140 (2019).

    Article  Google Scholar 

  2. Q Tang, H Shen, H Yao, K Gao, J Ge and Y Liu Appl Surf Sci 504 144588 (2020).

    Article  Google Scholar 

  3. Ö F Yüksel, A B Selçuk and S B Ocak Physica B 403 2690 (2008).

    Article  ADS  Google Scholar 

  4. C Bilkan and Ş Altındal J. Alloys Compd. 708 464 (2017).

    Article  Google Scholar 

  5. E V Ostroumova and A A Rogachev Appl. Surf. Sci. 166 480 (2000).

    Article  ADS  Google Scholar 

  6. H Aydin, C Bacaksiz, N Yagmurcukardes, C Karakaya, O Mermer, M Can and R T Senger Surf. Sci. 428 1010 (2018).

    Article  ADS  Google Scholar 

  7. Y J Lin and C L Wu J. Phys. 94 1209 (2020).

    ADS  Google Scholar 

  8. T Y Su and M Y Chen J. Phys. 95 1356 (2021).

    Google Scholar 

  9. J F Yu and Y J Lin J. Phys. 95 865 (2021).

    Google Scholar 

  10. F Paul, K N Manjunatha, S Govindarajan and S Paul Appl. Surf. Sci. 506 144686 (2020).

    Article  Google Scholar 

  11. A Fernández J. Phys. E: Sci. Instrum. 1 782 (1968).

    Article  ADS  Google Scholar 

  12. B C Dobbs J. Electron. Mater. 6 705 (1977).

    Article  ADS  Google Scholar 

  13. A Hu, W Wang and Q Xu J. Semicond. 30 084001 (2009).

    Article  Google Scholar 

  14. D Das and L Karmakar Appl. Surf. Sci. 481 16 (2019).

    Article  ADS  Google Scholar 

  15. J H Werner J. Appl. Phys. 75 994 (1994).

    Article  ADS  Google Scholar 

  16. J G Zhu J. Phys. D 40 547 (2007).

    Article  ADS  Google Scholar 

  17. M Tao, D Udeshi, S Agarwal, E Maldonado and W P Kirk Solid-State Electron. 48 335 (2004).

    Article  ADS  Google Scholar 

  18. Y J Lin and C T Lee Appl. Phys. Lett. 77 3986 (2000).

    Article  ADS  Google Scholar 

  19. H K Kim and J M Lee Superlattices Microstruct. 42 255 (2007).

    Article  ADS  Google Scholar 

  20. J D Hwang, W T Chang, K H Hseih, G H Yang, C Y Wu and P S Chen Thin Solid Films 493 203 (2005).

    Article  ADS  Google Scholar 

  21. H Seo, Y J Cha, A B M H Islam and J S Kwak Appl. Surf. Sci. 510 145180 (2020).

    Article  Google Scholar 

  22. Y J Lin Appl. Phys. Lett. 89 152121 (2006).

    Article  ADS  Google Scholar 

  23. H B Michaelson J. Appl. Phys. 48 4729 (1977).

    Article  ADS  Google Scholar 

  24. Y J Lin and J J Zeng Appl. Surf. Sci. 322 225 (2014).

    Article  ADS  Google Scholar 

  25. C A Aguirre, E Sardella and J Barba-Ortega Solid State Commun. 306 113799 (2020).

    Article  Google Scholar 

  26. C A Aguirre J. Barba-Ortega Physica C 581 1353818 (2021).

    ADS  Google Scholar 

  27. G K Reeves, H B Harrison and I E E E Electron Device Lett. 3 111 (1982).

    Article  Google Scholar 

  28. D K Schroder Semiconductor Material and Device Characterization, 3rd edition (Hoboken: John Wiley & Sons, Inc.) (2006)

  29. T V Blank and Y A Goldberg Semiconductors 41 1263 (2007).

    Article  ADS  Google Scholar 

  30. J Du, J W Mayer and L C Feldman Electronic thin film sciences (translators) X Huang, J Du, and K Chen (Beijing: Science Press) (1997) (in Chinese)

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 109-2112-M-018-005) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, XY., Chang, HC., Huang, BL. et al. Induced transition from Schottky to ohmic contact in In/n-type Si owing to (NH4)2Sx treatment. Indian J Phys 96, 3137–3141 (2022). https://doi.org/10.1007/s12648-021-02235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02235-6

Keywords

Navigation