Skip to main content
Log in

Electrical and magnetic properties of Ni0.75Zn0.25Fe2O4/Mn0.8Zn0.2Fe2O4 laminated co-fired ceramic composites prepared by spark plasma sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The MnZn/NiZn ferrite laminated co-fired ceramics were successfully prepared via spark plasma sintering (SPS) method. The interface between MnZn and NiZn ferrite layers in the co-fired ceramics has no obvious diffusion due to the short sintering time (less than 3 min) and low temperature (~ 1000 °C). The density and hardness of the co-fired samples increased with the increase of the sintering temperature. Due to the unique sintering process of SPS technique and the difference in electrical conductivity of the two ferrites, the MnZn ferrite layer is dense while the NiZn ferrite layer is loose in the co-fired ceramics. To adjust the sintering compatibility of NiZn ferrite and MnZn ferrite, the sintering additive Bi2O3 was used. Finally, the MnZn/Bi2O3-modified NiZn ferrite laminated co-fired ceramic composites with high density, hardness and good magnetic properties (MS-NiZn=68.71 emu/g, HC-NiZn=27.04 Oe, MS-MnZn=33.05 emu/g, HC-MnZn=11.05 Oe) were prepared by spark plasma sintering method. This work provides a simple and feasible method for preparing laminated co-fired ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. M. Jiménez-Melendo, F. Gutiérrez-Mora, A. Domínguez-Rodríguez, Effect of layer interfaces on the high-temperature mechanical properties of alumina/zirconia laminate composites. Acta. Mater. 48, 4715–4720 (2000)

    Article  Google Scholar 

  2. L. Ren, M. Zhang, H. Zhou, Co-firing compatibility of LTCC hetero-laminates with low and middle permittivity. J. Mater. Sci: Mater. Electron. 31, 12282–12291 (2020)

    CAS  Google Scholar 

  3. S. Dinesh Kumar, S. Gupta, A.B. Swain, V. Subramanian, M.K. Padmanabhan, R.L. Mahajan, Large converse magnetoelectric effect in Sm doped Pb(Mg1/3Nb2/3)-PbTiO3 and NiFe2O4 laminate composite. J. Alloys Compd. 858, 157684 (2021)

    Article  CAS  Google Scholar 

  4. N. Shara Sowmya, A. Srinivas, P. Saravanan, K. Venu Gopal Reddy, S.V. Kamat, J. Paul Praveen, D. Das, G. Murugesan, S. Dinesh Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT-(0.5) BZT]-NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2018)

    Article  CAS  Google Scholar 

  5. S. Dinesh Kumar, J. Magesh, V. Subramanian, Temperature dependent magnetoelectric studies in co-fired bilayer laminate composites. J. Alloys Compd. 753, 595–600 (2018)

    Article  CAS  Google Scholar 

  6. D. Zhou, Y. Chen, D. Zhang, H. Liu, Y. Hu, S. Gong, Fabrication and characterization of the multilayered PTCR ceramic thermistors by slip casting. Sens. Actuators A 116, 450–454 (2004)

    Article  CAS  Google Scholar 

  7. M.J. Kim, T.Y. Yang, Y.B. Lee, H.C. Park, Dispersion stability of Y-TZP/Ce-TZP powder system and slip casting. J. Mater. Sci. 37, 1661–1665 (2002)

    Article  CAS  Google Scholar 

  8. B. Ferrari, S. González, R. Moreno, C. Baudín, Multilayer coatings with improved reliability produced by aqueous electrophoretic deposition. J. Eur. Ceram. Soc. 26, 27–36 (2006)

    Article  CAS  Google Scholar 

  9. Y.J. Wu, N. Uekawa, K. Kakegawa, Sandwiched BaNd2Ti4O12/Bi4Ti3O12/BaNd2Ti4O12 ceramics prepared by spark plasma sintering. Mater. Lett. 57, 4088–4092 (2003)

    Article  CAS  Google Scholar 

  10. Z. Lou, M. Qin, P. Zhang, T. Su, Z. Shi, J. Xu, F. Gao, Microstructure and thermoelectric properties of Sr0.9La0.1TiO3/TiO2 biphase composite ceramics. J. Alloys Compd. 861, 158552 (2021)

    Article  CAS  Google Scholar 

  11. X. Liu, X.M. Chen, M.D. Liu, Z.D. Yu, J.J. Lan, X. Zhan, J.B. Lu, H.M. Jing, Improved dielectric and ferroelectric properties of fine-grained K0.5Na0.5NbO3 ceramics via hot-press sintering. Ceram. Int. 48, 11615–11622 (2022)

    Article  CAS  Google Scholar 

  12. M. Yang, L. Wang, H. Li, S. Wang, L. Wang, P. Xing, Y. Zhuang, Microstructure and mechanical properties of B4C matrix composites prepared via hot-pressing sintering with Pr6O11 as additive. Ceram. Int. 48, 7897–7904 (2022)

    Article  CAS  Google Scholar 

  13. M.G. Tokarev, E.A. Potanina, A.I. Orlova, S.A. Khainakov, M.S. Boldin, E.A. Lantsev, N.V. Sakharov, A.A. Murashov, S. Garcia-Granda, A.V. Nokhrin, V.N. Chuvildeev, Thermal expansion of Scheelite-Like molybdate powders and ceramics. Inorg. Mater 55, 730–736 (2019)

    Article  CAS  Google Scholar 

  14. V.M. Klymenko, Spark plasma sintering of porous materials made of 1Kh18N9T corrosion-resistant steel fibers. Powder Metall. Met. Ceram. 58, 23–28 (2019)

    Article  CAS  Google Scholar 

  15. T.M. Takeuchi, Synthesis of dense lead titanate ceramics with submicrometer grains by spark plasma sintering. J. Am. Ceram. Soc 83, 541–544 (2000)

    Article  CAS  Google Scholar 

  16. H. Wang, B. Fan, L. Feng, D. Chen, H. Lu, H. Xu, C.A. Wang, R. Zhang, The fabrication and mechanical properties of SiC/ZrB2 laminated ceramic composite prepared by spark plasma sintering. Ceram. Int. 38, 5015–5022 (2012)

    Article  CAS  Google Scholar 

  17. B. Ratzker, R. Shrem, I. Ayalon, A. Shirakov, Z. Burshtein, S. Kalabukhov, N. Maman, V. Ezersky, A. Ishaaya, E. Galun, N. Frage, Co2+:MgAl2O4 saturable absorber transparent ceramics fabricated by high-pressure spark plasma sintering. J. Eur. Ceram. Soc. 42, 6067–6074 (2022)

    Article  CAS  Google Scholar 

  18. D.Y. Kosyanov, R.P. Yavetskiy, A.V. Tolmachev, A.A. Vornovskikh, A.V. Pogodaev, E.A. Gridasova, O.O. Shichalin, T.A. Kaidalova, V.G. Kuryavyi, Fabrication of highly-doped Nd3+:YAG transparent ceramics by reactive SPS. Ceram. Int. 44, 23145–23149 (2018)

    Article  CAS  Google Scholar 

  19. M.A. Bousnina, F. Schoenstein, L.S. Smiri, N. Jouini, Facile synthesis of metastable Ni–P nanostructured materials by a novel bottom-up strategy. Solid. State. Sci. 40, 13–19 (2015)

    Article  CAS  Google Scholar 

  20. A. Sedaghat Ahangari, H. Zadeh, E. Taheri-Nassaj, Densification behaviour and microstructure of spark plasma sintered alumina–mullite nanocomposite. Micro. Nano. Lett. 14, 957–961 (2019)

    Article  Google Scholar 

  21. Y.J. Wu, N. Uekawa, Y. Sasaki, K. Kakegawa, Microstructures and pyroelectric properties of multicomposition 0.9PbZrO3·xPbTiO3·(0.1-x)pb(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc 85, 1988–1992 (2002)

    Article  CAS  Google Scholar 

  22. A. Thakur, P. Mathur, M. Singh, Study of dielectric behaviour of Mn–Zn nano ferrites. J. Phys. Chem. Solids. 68, 378–381 (2007)

    Article  CAS  Google Scholar 

  23. N. Aggarwal, S.B. Narang, Magnetic characterization of Nickel-Zinc spinel ferrites along with their microwave characterization in Ku band. J. Magn. Magn. Mater. 513, 167052 (2020)

    Article  CAS  Google Scholar 

  24. Y. Yang, H. Zhang, J. Li, Y. Rao, G. Wang, G. Gan, Bi3+ doping-adjusted microstructure, magnetic, and dielectric properties of nickel zinc ferrite ceramics for high frequency LTCC antennas. Ceram. Int. 46, 25697–25704 (2020)

    Article  CAS  Google Scholar 

  25. S. Taneja, D. Chahar, P. Thakur, A. Thakur, Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites. J. Alloys Compd. 859, 157760 (2021)

    Article  CAS  Google Scholar 

  26. A. Ghasemi, M.R. Loghman-Estarki, S. Torkian, M. Tavoosi, The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method. Compos. Part. B-Eng. 175, 107179 (2019)

    Article  CAS  Google Scholar 

  27. P. Thakur, S. Taneja, D. Chahar, B. Ravelo, A. Thakur, Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 530, 167925 (2021)

    Article  CAS  Google Scholar 

  28. J. Hu, Z. Li, H. Yu, X. Zhong, Z. Liu, K. Long, J. Li, Modifying the soft magnetic Properties of Mn-Zn Ferrites by Ce2O3-Doping and sintering temperature optimization. J. Electron. Mater. 49, 6501–6509 (2020)

    Article  CAS  Google Scholar 

  29. M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5–Ni0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  30. C. Yang, F. Liu, T.L. Ren, L.T. Liu, G. Chen, X.K. Guan, A. Wang, Z.X. Yue, Ni-Zn ferrite film coated on-chip RF inductor fabricated by a novel powder-mixed-photoresist coating technique. IEEE Mtt S Int Micr Vols. 1–6, 465–468 (2007)

    Google Scholar 

  31. X. Niu, B. Zong, H. Hu, B. Wu, Influence of Sn4+-substituted on the magnetic properties and power loss of Ni-Zn soft magnetic ferrites. Optik. 134, 135–139 (2017)

    Article  CAS  Google Scholar 

  32. M. Popela, J. Láčík, L. Dražan, Waveguide power phase shifter with a ferrite circulator in S-band. J. Electr. Eng. 73, 215–220 (2022)

    Google Scholar 

  33. T.V. Sagar, T.S. Rao, K.C.B. Naidu, Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8). Ceram. Int. 46, 11515–11529 (2020)

    Article  CAS  Google Scholar 

  34. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  35. M.L.S. Teo, L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, Development of magneto-dielectric materials based on Li-ferrite ceramics. J. Alloys Compd. 459, 557–566 (2008)

    Article  CAS  Google Scholar 

  36. M. Drofenik, A. Žnidaršič, D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn Ferrites. J. Am. Ceram. Soc. 81, 2841–2848 (1998)

    Article  CAS  Google Scholar 

  37. J. Mürbe, J. Töpfer, Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi2O3 addition on microstructure and permeability. J. Electroceram. 16, 199–205 (2006)

    Article  Google Scholar 

  38. H. Mahmud, J.U. Ahamed, M.N.I. Khan, Giant effect on structural, magnetic, electrical, and optical properties of lead-free Ba0.6Sr0.4Ti1-xAlxO3 ceramics via Sr and Al Co-doping engineering. Mater. Res. Express. 9, 112001 (2022)

    Article  Google Scholar 

  39. M. Yan, X.L. Peng, Fundamentals of Magnetism and Magnetic Materials (Zhejiang University Press, Hangzhou, 2006), p. 110

    Google Scholar 

  40. Y.J. Huang, Z.W. Lan, Magnetic Materials (Publishing House of Electronics Industry, Beijing, 1994), pp. 1–92

    Google Scholar 

  41. N. Raghuram, T.S. Rao, K.C.B. Naidu, Magnetic properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) nanomaterials. Appl. Phys. A. 125 (2019). 

    Article  Google Scholar 

  42. D. Sivakumar, K.C.B. Naidu, K.P. Nazeer, M.M. Rafi, G.R. Kumar, B. Sathyaseelan, G. Killivalavan, A.A. Begam, Structural characterization and dielectric studies of superparamagnetic iron oxide nanoparticles. J. Korean Ceram. Soc 55, 230–238 (2018)

    Article  CAS  Google Scholar 

  43. D.F. Wan, X.L. Ma, Magnetic Physics (University of Electronic Science and Technology Press, Chengdu, 1994), pp. 342–380

    Google Scholar 

  44. Z. Cai, S. Li, Q. Zhang, C. Wang, Z. Jin, M. Fu, S. Zhang, M. Liang, Z. Wang, Y. Han, Derivation and verification of the relationship between ablation index and baseline impedance. Cardiol. Res. Pract. 2021, 5574125 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of State Key Laboratory of Environment-friendly Energy Materials (No. 20fksy23 and 21fksy27) and Southwest University of Science and Technology (No. 22zx7157 and No. 20zg811002).

Funding

This study was supported by  State Key Laboratory of Environment-friendly Energy Materials (No. 20fksy23 and 21fksy27),  Southwest University of Science and Technology (No. 22zx7157 and No. 20zg811002).

Author information

Authors and Affiliations

Authors

Contributions

QN: Conceptualization, Methodology, Formal analysis, Resources, Data Curation, Writing—Original Draft. BD: Resources, Supervision, Writing—Review & Editing. YR: Supervision. GL: Formal analysis,Writing—Review & Editing. FX: Formal analysis. YZ: Investigation. XL: Investigation. XY: Funding acquisition, YW: Investigation.

Corresponding author

Correspondence to Bo Dai.

Ethics declarations

Conflict of interest

All co-authors agreed to this submission, which has not been considered by any other journal.

Ethical approval

The full paper has not been submitted or published elsewhere and will not be submitted elsewhere until the journal editorial process is complete.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Q., Dai, B., Ren, Y. et al. Electrical and magnetic properties of Ni0.75Zn0.25Fe2O4/Mn0.8Zn0.2Fe2O4 laminated co-fired ceramic composites prepared by spark plasma sintering. J Mater Sci: Mater Electron 34, 1237 (2023). https://doi.org/10.1007/s10854-023-10652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10652-y

Navigation