Skip to main content
Log in

Magnetic properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) nanomaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Barium strontium hexaferrite (BSFO) nanomaterial compositions were prepared using hydrothermal technique. The phase identification of BSFO revealed the hexagonal structure. The field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) techniques were used to study the surface morphology of BSFO nanostructures. TEM study showed the presence of distorted spheres like nanostructures of size 7–28 nm. Furthermore, the presence of metal oxides (Ba–O, Sr–O, and Fe–O) and functional groups were detected using Fourier transform infrared spectra (FTIR). Subsequently, magnetic nature of BSFO was confirmed using magnetization–magnetic field (MH) and magnetic permeability–temperature (μiT) plots. The μiT plots suggested the enhancement of Tc from 703 K–753 K as a function of Sr-content (x). In addition, the variation of μi, magnetic loss (μ″) as well as relative magnetic loss factor (rlf: tanδ/μi) with respect to the frequency was performed for probable transformer and inductor core device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data will be made available immediately based on the request.

References

  1. B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198–203 (2013)

    Google Scholar 

  2. M.J. Iqbal, M.N. Ashiq, I.H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322, 1720–1726 (2010)

    ADS  Google Scholar 

  3. S. Ramesh, D. Ravinder, K.C.B. Naidu, N.S. Kumar, K. Srinivas, D.B. Basha, B.C. Sekhar, A review on giant piezoelectric coefficient, materials and applications. Biointerface Res. Appl. Chem. 9, 4205–4216 (2019)

    Google Scholar 

  4. M. Hashim, K.C.B. Naidu, G.H.R. Joice, J.L. Naik, D. Ravinder, Superparamagnetic and photocatalytic activity of CoCe0.02Dy0.02Fe1.96O4 nanoparticles synthesized by citrate-gel autocombustion technique. Biointerface Res. Appl. Chem. 9, 4164–4167 (2019)

    Google Scholar 

  5. M.A. Ahmed, N. Helmy, S.I. El-Dek, Innovative methodology for the synthesis of Ba-M hexaferrite BaFe12O19 nanoparticles. Mater. Res. Bull. 48, 3394–3398 (2013)

    Google Scholar 

  6. B. Huang, C. Li, J. Wang, Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe12O19) nanofibers. J. Magn. Magn. Mater. 335, 28–31 (2013)

    ADS  Google Scholar 

  7. Y. Li, Q. Wang, H. Yang, Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite. Curr. Appl. Phys. 9, 1375–1380 (2009)

    ADS  Google Scholar 

  8. M.B. Kaynar, Ş. Özcan, S.I. Shah, Synthesis and magnetic properties of nanocrystalline BaFe12O19. Ceram. Int. 41, 11257–11263 (2015)

    Google Scholar 

  9. C.J. Li, B.-N. Huang, J.-N. Wang, Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers. J. Mater. Sci. 48, 1702–1710 (2012)

    ADS  Google Scholar 

  10. J.-L. Mattei, C.N. Le, A. Chevalier, A. Maalouf, N. Noutehou, P. Queffelec, V. Laur, A simple process to obtain anisotropic self-biased magnets constituted of stacked barium ferrite single domain particles. J. Magn. Magn. Mater. 451, 208–213 (2018)

    ADS  Google Scholar 

  11. Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279–7284 (2014)

    Google Scholar 

  12. X. Shen, M. Liu, F. Song, X. Meng, Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning. J. Sol Gel. Sci. Technol. 53, 448–453 (2009)

    Google Scholar 

  13. K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.-J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater. Sci. Eng. B 176, 8–13 (2011)

    Google Scholar 

  14. W.S. Castro, R.R. Corrêa, P.I. Paulim Filho, J.M. Rivas Mercury, A.A. Cabral, Dielectric and magnetic characterization of barium hexaferrite ceramics. Ceram. Int. 41, 241–246 (2015)

    Google Scholar 

  15. C. Hou, G. Liu, F. Dang, Z. Zhang, J. Chen, Effect of strontium substitution on microstructure and magnetic properties of electrospinning BaFe12O19 nanofibers. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 871–874 (2017)

    Google Scholar 

  16. I. Bsoul, S.H. Mahmood, Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles. J. Alloys Compd. 489, 110–114 (2010)

    Google Scholar 

  17. Y. Liu, M.G.B. Drew, Y. Liu, Optimizing the methods of synthesis for barium hexagonal ferrite-An experimental and theoretical study. Mater. Chem. Phys. 134, 266–272 (2012)

    Google Scholar 

  18. D. Guo, W. Kong, J. Feng, X. Li, X. Fan, Microwave absorption properties of SrxBa3–xCo2Fe24O41 hexaferrites in the range of 0.1–18 GHz. J. Alloys Compd. 751, 80–85 (2018)

    Google Scholar 

  19. S. Shooshtary Veisi, M. Yousefi, M.M. Amini, A.R. Shakeri, M. Bagherzadeh, Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol-gel auto-combustion method. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.09.189

    Article  Google Scholar 

  20. D. Guo, W. Kong, J. Feng, X. Li, X. Fan, Synthesis, electromagnetic and microwave absorption properties of Ba3Co2Fe24O41 hexaferrites for GHz application. Mater. Sci. Eng. B 228, 213–217 (2018)

    Google Scholar 

  21. F. Song, X. Shen, J. Xiang, Y. Zhu, Characterization and magnetic properties of BaxSr1–xFe12O19 (x = 0–1) ferrite hollow fibers via gel-precursor transformation process. J. Alloys Compd. 507, 297–301 (2010)

    Google Scholar 

  22. N. Raghuram, T.S. Rao, K.C.B. Naidu, Investigations on functional properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) Nanoparticles. Mater. Sci. Semicond. Process. 94, 136–150 (2019)

    Google Scholar 

  23. M. Cernea, S.-G. Sandu, C. Galassi, R. Radu, V. Kuncser, Magnetic properties of BaxSr1−xFe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J. Alloys Compd. 561, 121–128 (2013)

    Google Scholar 

  24. J. Luo, S. Pan, L. Cheng, P. Lin, Y. He, J. Chang, Electromagnetic and microwave absorption properties of Er-Ho-Fe alloys. J. Rare Earths 36, 715–720 (2018)

    Google Scholar 

  25. W. Yang, Y. Zhang, G. Qiao, Y. Lai, S. Liu, C. Wang, J. Yang et al., Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites. Acta Mater. 145, 331–336 (2018)

    ADS  Google Scholar 

  26. C. Chen, L. Pan, S. Jiang, S. Yin, X. Li, J. Zhang, J. Yang et al., Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites. J. Eur. Ceram. Soc. 38, 1639–1646 (2018)

    Google Scholar 

  27. X. Jilei, P. Shunkang, C. Lichun, L. Peihao, Y. Qingrong, F. Yulong, Effect of Dy content on microwave absorption properties of Pr2Fe17 alloy. Rare Metal Mater. Eng. 46, 2060–2064 (2017)

    Google Scholar 

  28. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Reading, 1978)

    Google Scholar 

  29. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    ADS  Google Scholar 

  30. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, G.R. Kumar, S. Ramesh, Structural and functional properties of sol-gel synthesized and microwave heated Pb0.8Co0.2-zLazTiO3 (z = 0.05–0.2) nanoparticles. Ceram. Int. 44, 19408–19420 (2018)

    Google Scholar 

  31. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Sol–gel synthesized and microwave heated Pb0.8-yLayCo0.2TiO3 (y = 0.2–0.8) nanoparticles: structural, morphological and dielectric properties. Ceram. Int. 44, 18189–18199 (2018)

    Google Scholar 

  32. N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, Grain and grain boundary conduction mechanism in sol-gel synthesized and microwave heated Pb0.8–yLayCo0.2TiO3 (y = 0.2–0.8) nanofibers. Mater. Chem. Phys. 223, 241–248 (2019)

    Google Scholar 

  33. N. Velhal, G. Kulkarni, D. Mahadik, P. Chowdhury, H. Barshilia, V. Puri, Effect of Ba2+ ion on structural, magnetic and microwave properties of screen printed BaxSr1-x Fe12O19 thick films. J. Alloys Compd. 682, 730–737 (2016)

    Google Scholar 

  34. P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution. Curr. Appl. Phys. 11, 101–108 (2011)

    ADS  Google Scholar 

  35. K.C.B. Naidu, V.N. Reddy, T.S. Sarmash, D. Kothandan, T. Subbarao, N.S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO–ZnO–TiO2 ternary system. J. Aust. Ceram. Soc. (2018). https://doi.org/10.1007/s41779-018-0225-0

    Article  Google Scholar 

  36. U. Naresh, R.J. Kumar, K.C.B. Naidu, Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater. Chem. Phys. 236, 121807 (2019)

    Google Scholar 

  37. T. Ramaprasad, R.J. Kumar, U. Naresh, M. Prakash, D. Kothandan, K.C.B. Naidu, Effect of pH value on structural and magnetic properties of CuFe2O4 nanoparticles synthesized by low temperature hydrothermal technique. Mater. Res. Express 5, 095025 (2018)

    Google Scholar 

  38. I. Zouaria, Z. Sassib, L. Seveyratb, N. Abdelmoulaa, L. Lebrunb, H. Khemakhem, Structural, dielectric, piezoelectric, ferroelectric and electro-caloric properties of Ba1−xCaxTi0.975(Nb0.5Yb0.5)0.025O3 lead-free ceramics. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.01.242

    Article  Google Scholar 

  39. Guo-Long Tan, Wei Li, Ferroelectricity and ferromagnetism of M-type lead hexaferrites. J. Am. Ceram. Soc. 98, 1812–1817 (2015)

    Google Scholar 

  40. U. Naresh, R.J. Kumar, K.C.B. Naidu, Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8-xLaxFe2O4 (x = 0.2–0.6) nanoparticles. Ceram. Int. 45, 7515–7523 (2019)

    Google Scholar 

  41. M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites. J. Alloys Compd. 617, 437–443 (2014)

    Google Scholar 

  42. C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263, 253–268 (2003)

    ADS  Google Scholar 

  43. C. Caizer, Nanoparticle size effect on some magnetic properties, handbook of nanoparticles (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-13188-7-24-1

    Book  Google Scholar 

  44. Tahseen H. Mubarak, Olfat A. Mahmood, Zahraa J. Hamakhan, Structural, magnetic and electrical properties of Ba2Mg2Fe28O46 (Mg2X) hexaferrites. Int. J. Appl. Eng. Res. 13, 6369–6379 (2018)

    Google Scholar 

  45. J. Geshev, A.D.C. Viegas, J.E. Schm, Negative remanent magnetization of fine particles with competing cubic and uniaxial anisotropies. J. Appl. Phys. 84, 1488–1492 (1998)

    ADS  Google Scholar 

  46. Y. Chen, Y. Zhang, R. Keil, M. Zopf, F. Ding, O.G. Schmidt, Temperature-dependent coercive field measured by a quantum dot strain gauge. Nano Lett. 17, 7864–7868 (2017)

    ADS  Google Scholar 

  47. H.H. Wu, J. Wang, S.G. Cao, L.Q. Chen, T.Y. Zhang, The unusual temperature dependence of the switching behavior in a ferroelectric single crystal with dislocations. Smart Mater. Struct. 23, 025004 (2014)

    ADS  Google Scholar 

  48. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. 240, 599–642 (1948)

    ADS  MATH  Google Scholar 

  49. J.S. Lee, J.M. Cha, H.Y. Yoon, J.-K. Lee, Y.K. Kim, Magnetic multi-granule nanoclusters: a model system that exhibits universal size effect of magnetic coercivity. Sci. Rep. 5, 12135 (2015). https://doi.org/10.1038/srep12135

    Article  ADS  Google Scholar 

  50. K.C.B. Naidu, W. Madhuri, Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technology (Magn, IEEE Trans, 2018). https://doi.org/10.1109/tmag.2018.2855663

    Book  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Prof. T. Subba Rao, S.K.University, Anantapur, A.P., for helping sample preparation and characterization. In addition, the authors thank Varadaraja Perumal, IISC-Bangalore for providing FESEM pictures and PSA data to us on time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandra Babu Naidu.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghuram, N., Rao, T.S. & Naidu, K.C.B. Magnetic properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) nanomaterials. Appl. Phys. A 125, 839 (2019). https://doi.org/10.1007/s00339-019-3143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3143-2

Navigation