Skip to main content
Log in

Enhanced catalytic activity of Co/Fe co-doped MoS2 catalyst as the peroxymonosulfate activator for organic pollutants degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Based on the strong capability of transition metal ions for peroxymonosulfate (PMS) activation and highly affinity of MoS2 towards PMS, thus decorating MoS2 with transition metal ions would efficiently activate PMS for degradation of organic pollutants. In this work, Co/Fe co-doped MoS2 catalyst were synthesized by simple chemical method. The prepared Co/Fe co-doped MoS2 catalyst displayed excellent catalytic activity for organic pollutant degradation. The removal efficiency of RhB and MB is 99% in 6 min and 98% in 15 min under PMS system, respectively. Both the capture experiment and EPR results verified that 1O2 played an important role in the organic pollutant degradation process in PMS system. The catalytic mechanism revealed that the synergistic effect between Mo ion and Co/Fe ions is beneficial for boosting the catalytic properties of Co/Fe co-doped MoS2 catalyst. The cycle experiments confirmed that Co/Fe co-doped MoS2 possesses excellent chemical stability and re-usability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. E.C. Ryberg, C. Chu, J.H. Kim, Edible dye-enhanced solar disinfection with safety indication. Environ. Sci. Technol. 52(22), 13361–13369 (2018)

    Article  CAS  Google Scholar 

  2. Z.H. Ai, P. Yang, X.H. Lu, Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere 60(6), 824–827 (2005)

    Article  CAS  Google Scholar 

  3. A. Rezaee, H. Masoumbeigi, R.D.C. Soltani, A.R. Khataee, S. Hashemiyan, Photocatalytic decolorization of methylene blue using immobilized ZnO nanoparticles prepared by solution combustion method. Desalination Water Treat 44(1–3), 174–179 (2012)

    Article  CAS  Google Scholar 

  4. K. Lu, T.T. Wang, L. Zhai, W. Wu, S.P. Dong, S.X. Gao, L. Mao, Adsorption behavior and mechanism of Fe–Mn binary oxide nanoparticles: adsorption of methylene blue. J. Colloid Interface Sci. 539, 553–562 (2019)

    Article  CAS  Google Scholar 

  5. S. Gamoudi, E. Srasra, Adsorption of organic dyes by HDPy+−modified clay: effect of molecular structure on the adsorption. J. Mol. Struct. 1193, 522–531 (2019)

    Article  CAS  Google Scholar 

  6. M.Y. Yin, Y.S. Pan, C.L. Pan, Adsorption properties of graphite oxide for rhodamine B. Micro Nano Lett. 14(11), 1192–1197 (2019)

    Article  CAS  Google Scholar 

  7. Y.Y. Wu, Z.R. Gao, X.F. Sun, H.L. Cai, X.S. Wu, Photo-degradation organic dyes by Sb-based organic-inorganic hybrid ferroelectrics. J. Environ. Sci. 101, 145–155 (2021)

    Article  CAS  Google Scholar 

  8. F. Doagoo, M. Peyravi, S. Khalili, Photo-degradation and discoloration of nitrogen substituted ZnO via multilayer adsorptive membrane for cr (VI) removal. J. Environ. Chem. Eng. 9(2), 105153 (2021)

    Article  CAS  Google Scholar 

  9. H.J. Fang, Y.S. Pan, H.X. Yan, X.L. Qin, C. Wang, L.F. Xu, C.L. Pan, Facile preparation of Yb3+/Tm3 + co-doped Ti3C2/Ag/Ag3VO4 composite with an efficient charge separation for boosting visible-light photocatalytic activity. Appl. Surf. Sci. 527(15), 146909 (2020)

    Article  CAS  Google Scholar 

  10. L.C. Li, G.R. Xu, H.R. Yu, Dynamic membrane filtration: formation, filtration, cleaning, and applications. Chem. Eng. Technol. 41(1), 7–18 (2018)

    Article  Google Scholar 

  11. C.G. Eggensperger, M. Giagnorio, M.C. Holland, K.M. Dobosz, J.D. Schiffman, A. Tiraferri, K.R. Zodrow, Sustainable living filtration membranes. Environ. Sci. Technol. Lett. 7(3), 213–218 (2020)

    Article  CAS  Google Scholar 

  12. M.Y. Huang, Y. Chen, X. Yan, X.J. Guo, L. Dong, W.Z. Lang, Two-dimensional montmorillonite membranes with efficient water filtration. J. Membr. Sci. 614(15), 118540 (2020)

    Article  CAS  Google Scholar 

  13. S.Z. Wang, J.L. Wang, Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chem. Eng. J. 336, 595–601 (2018)

    Article  CAS  Google Scholar 

  14. P.D. Hu, M.C. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl. Catal. B 181, 103–117 (2016)

    Article  CAS  Google Scholar 

  15. Y.J. Bao, T. Chen, Z.L. Zhu, H. Zhang, Y.L. Qiu, D.Q. Yin, Mo2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation. Chemosphere 287(1), 132047 (2021)

    Google Scholar 

  16. W.D. Oh, Z. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl. Catal. B 194, 169–201 (2016)

    Article  CAS  Google Scholar 

  17. M.H. Nie, Y. Yang, Z.J. Zhang, C.X. Yan, X.N. Wang, H.J. Li, W.B. Dong, Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem. Eng. J. 246, 373–382 (2014)

    Article  CAS  Google Scholar 

  18. R.L. Yin, W.Q. Guo, H.Z. Wang, J.S. Du, X.J. Zhou, Q.L. Wu, H.S. Zheng, J.S. Chang, N.Q. Ren, Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: performances and mechanisms. Chem. Eng. J. 335, 145–153 (2018)

    Article  CAS  Google Scholar 

  19. Z.Y. Shen, H.Y. Zhou, Z.C. Pan, Y. Guo, Y. Yuan, G. Yao, B. Lai, Degradation of atrazine by Bi2MoO6 activated peroxymonosulfate under visible light irradiation  J. Hazard. Mater. 400(5), 123187 (2020)

    Article  CAS  Google Scholar 

  20. H. Milh, D. Cabooter, R. Dewil, Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation: radical identification and elucidation of the degradation mechanism. Chem. Eng. J. 422, 130457 (2021)

    Article  CAS  Google Scholar 

  21. J.K. Du, J.G. Bao, H.B. Ling, H. Zheng, S.H. Kim, D.D. Dionysiou, Efficient activation of peroxymonosulfate by magnetic Mn–MGO for degradation of bisphenol A. J. Hazard. Mater. 320, 150–159 (2016)

    Article  CAS  Google Scholar 

  22. K.Y.A. Lin, Y.C. Chen, Y.F. Lin, LaMO3 perovskites (M = co, Cu, Fe and Ni) as heterogeneous catalysts for activating peroxymonosulfate in water. Chem. Eng. Sci. 160, 96–105 (2017)

    Article  CAS  Google Scholar 

  23. W.D. Oh, V.W.C. Chang, Z.T. Hu, R. Goei, T.T. Lim, Enhancing the catalytic activity of g-C3N4 through me doping (me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 323, 260–269 (2017)

    Article  CAS  Google Scholar 

  24. G.L. Zhou, L. Zhou, H.Q. Sun, H.M. Ang, M.O. Tade, S.B. Wang, Carbon microspheres supported cobalt catalysts for phenol oxidation with peroxymonosulfate. Chem. Eng. Res. Design 101, 15–21 (2015)

    Article  CAS  Google Scholar 

  25. C.H. Chu, J. Yang, X.C. Zhou, D.H. Huang, H.F. Qi, S. Weon, J.F. Li, M. Elimelech, A.Q. Wang, J.H. Kim, Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environ. Sci. Technol. 55(2), 1242–1250 (2021)

    Article  CAS  Google Scholar 

  26. M. Markovic, S. Marinovic, T. Mudrinic, Z. Mojovic, M. Ajdukovic, A. Milutinovic-Nikolic, P. Bankovic, Cobalt impregnated pillared montmorillonite in the peroxymonosulfate induced catalytic oxidation of tartrazine. React. Kinet. Mech. Catal. 125(2), 827–841 (2018)

    Article  CAS  Google Scholar 

  27. H.R. Song, R. Du, Y.W. Wang, D.Y. Zu, R. Zhou, Y. Cai, F.X. Wang, Z. Li, Y.M. Shen, C.P. Li, Anchoring single atom cobalt on two-dimensional mxene for activation of peroxymonosulfate. App. Catal. B Environ. 286, 119100 (2021)

    Article  Google Scholar 

  28. J. Ren, L.S. Jiang, Y. Li, G.K. Zhang, Cobalt doped bismuth oxysulfide with abundant oxygen vacancies towards tetracycline degradation through peroxymonosulfate activation. Sep. Purif. Technol. 275, 119100 (2021)

    Article  CAS  Google Scholar 

  29. A. Raza, M. Ikram, M. Aqeel, M. Imran, A. Ul-Hamid, K.N. Riaz, S. Ali, Enhanced industrial dye degradation using Co doped in chemically exfoliated MoS2 nanosheets. Appl. Nanosci. 10(5), 1535–1544 (2020)

    Article  CAS  Google Scholar 

  30. W.T. Yein, Q. Wang, Y. Li, X.H. Wu, Piezoelectric potential induced the improved micro-pollutant dye degradation of Co doped MoS2 ultrathin nanosheets in dark. Catal. Commun. 125, 61–65 (2019)

    Article  CAS  Google Scholar 

  31. A. Ebnonnasir, B. Narayanan, S. Kodambaka, C.V. Ciobanu, Tunable MoS2 bandgap in MoS2-graphene heterostructures. Appl. Phys. Lett. 105(3), 031603 (2014)

    Article  Google Scholar 

  32. E. Grilla, M.N. Kagialari, A. Petala, Z. Frontistis, D. Mantzavinos, Photocatalytic degradation of valsartan by MoS2/BiOCl heterojunctions. Catalysts 11(6), 650 (2021)

    Article  CAS  Google Scholar 

  33. J. Lu, Y. Zhou, Y.B. Zhou, Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem. Eng. J. 422, 130126 (2021)

    Article  CAS  Google Scholar 

  34. U. Krishnan, M. Kaur, G. Kaur, K. Singh, A.R. Dogra, M. Kumar, A. Kumar, MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial polluntants. Mater. Res. Bull. 111, 212–221 (2019)

    Article  CAS  Google Scholar 

  35. U. Krishnan, M. Kaur, K. Singh, G. Kaur, P. Singh, M. Kumar, A. Kumar, MoS2/Ag nanocomposites for electrochemical sensing and photocatalytic degradation of textile pollutant. J. Mater. Sci. Mater. Electron. 30(4), 3711–3721 (2019)

    Article  CAS  Google Scholar 

  36. Y. Chen, G. Zhang, H.J. Liu, J.H. QU, Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem. Int. Ed. 58(24), 8134–8138 (2019)

    Article  CAS  Google Scholar 

  37. L.W. Chen, X. Zuo, L. Zhou, Y. Huang, S.J. Yang, T.M. Cai, D.H. Ding, Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: kinetics and mechanism. Chem. Eng. J. 345, 364–374 (2018)

    Article  CAS  Google Scholar 

  38. S.J. Zhu, Y.P. Xu, Z.G. Zhu, Z.Q. Liu, W. Wang, Activation of peroxymonosulfate by magnetic Co–Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chem. Eng. J. 384, 123298 (2020)

    Article  CAS  Google Scholar 

  39. R.N. Guo, Y.L. Zhu, X.W. Cheng, J.J. Li, J.C. Crittenden, Efficient degradation of lomefloxacin by Co-Cu-LDH activating peroxymonosulfate process: optimization, dynamics, degradation pathway and mechanism. J. Hazard. Mater. 399, 122966 (2020)

    Article  CAS  Google Scholar 

  40. P. Chen, S.L. Zeng, Y.L. Zhao, S.C. Kang, T.T. Zhang, S.X. Song, Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability. J. Mater. Sci. Technol. 41, 88–97 (2020)

    Article  CAS  Google Scholar 

  41. H. Peng, J. Lu, C.X. Wu, Z.X. Yang, H. Chen, W.J. Song, P.Q. Li, Z. Yin, Co-doped MoS2 NPs with matched energy band and low overpotential high efficiently convert CO2 to methanol. Appl. Surf. Sci. 353, 1003–1012 (2015)

    Article  CAS  Google Scholar 

  42. H. Wang, Q. Gao, T.H. Li, B. Han, K.S. Xia, C.G. Zhou, One-pot synthesis of a novel hierarchical co (II)-doped TiO2 nanostructure: toward highly active and durable catalyst of peroxymonosulfate activation for degradation of antibiotics and other organic pollutants. Chem. Eng. J. 368, 377–389 (2019)

    Article  CAS  Google Scholar 

  43. L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ. Sci. 11(1), 106–114 (2018)

    Article  CAS  Google Scholar 

  44. W.J. Peng, W. Wang, G.H. Han, Y.K. Huang, Y.S. Zhang, Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization. Desalination 473, 114191 (2020)

    Article  CAS  Google Scholar 

  45. B. Sheng, F. Yang, Y.H. Wang, Z.H. Wang, Q. Li, Y.G. Guo, X.Y. Lou, J.S. Liu, Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS. Chem. Eng. J. 375, 121989 (2019)

    Article  CAS  Google Scholar 

  46. J. Wang, X.X. Wang, G.X. Zhao, G. Song, D.Y. Chen, H.X. Chen, J. Xie, T. Hayat, A. Alsaedi, X.K. Wang, Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium (VI) from aqueous solutions. Chem. Eng. J. 334, 569–578 (2018)

    Article  CAS  Google Scholar 

  47. X.N. Liu, Q.F. Lu, C.F. Zhu, S.W. Liu, Enhanced photocatalytic activity of alpha-Fe2O3/Bi2WO6 heterostructured nanofibers prepared by electrospinning technique. RSC Adv. 5(6), 4077–4082 (2015)

    Article  CAS  Google Scholar 

  48. W.J. Zhu, X.L. Tang, F.Y. Gao, H.H. Yi, R.C. Zhang, J.G. Wang, C. Yang, S.Q. Ni, The effect of non-selective oxidation on the Mn2Co1Ox catalysts for NH-SCR: positive and non-positive. Chem. Eng. J. 385, 123797 (2020)

    Article  CAS  Google Scholar 

  49. N. Li, S.F. Tang, Y.D. Rao, J.B. Qi, Q.R. Zhang, D.L. Yuan, Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell[J]. Electrochim. Acta 298, 59–69 (2019)

    Article  CAS  Google Scholar 

  50. Y. Chen, G. Zhang, Q.H. Ji, H.J. Liu, J.H. Qu, Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic fenton-like reactions. ACS Appl. Mater. Interfaces 11(30), 26781–26788 (2019)

    Article  CAS  Google Scholar 

  51. M.T. Chen, L.H. Zhu, S.G. Liu, R. Li, N. Wang, H.Q. Tang, Efficient degradation of organic pollutants by low-level Co2+ catalyzed homogeneous activation of peroxymonosulfate. J. Hazard. Mater. 371, 456–462 (2019)

    Article  CAS  Google Scholar 

  52. L.W. Chen, X. Zou, S.J. Yang, T.M. Cai, D.H. Ding, Rational design and synthesis of hollow Co3O4@ Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate. Chem. Eng. J. 359, 373–384 (2019)

    Article  CAS  Google Scholar 

  53. H. Xia, H.L. Qin, Y.S. Zhang, H. Yin, Q. Li, F. Pan, D.S. Xia, D.Y. Li, H.M. Xu, Modulate 1O2 by passivate oxygen vacancy to boosting the photocatalytic performance of Z-scheme Mo2S3/BiOCl heterostructure. Sep. Purif. Technol. 266, 118547 (2021)

    Article  CAS  Google Scholar 

  54. C. Pan, L.B. Fu, Y.B. Ding, X.Q. Peng, Q.H. Moa, Regeneration of Co2+ by MoS2: the pivotal role of pH. Sci. Total Environ. 712, 136447 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Nature Science Research Project of Anhui province (2108085MB44), Primary Research & Development of Anhui Province (201904a05020040) and Research Foundation of the Institute of Environment-friendly Materials and Occupational Health (Wuhu), Anhui University of Science and Technology (ALW2020YF10).

Author information

Authors and Affiliations

Authors

Contributions

YP: Contributions to conception and experiment design. YZ: Contributions to experiment operation, acquisition of data, analysis and interpretation of data. YW: Contributions to revising article critically for important intellectual content. RH: Contributions to analysis and interpretation of data. CP: Contributions to experiment design.

Corresponding author

Correspondence to Yusong Pan.

Ethics declarations

Competing interests

The authors declare that there is no potential conflicts of inerest. 

Research involving human and animal participates

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Zhu, Y., Wang, Y. et al. Enhanced catalytic activity of Co/Fe co-doped MoS2 catalyst as the peroxymonosulfate activator for organic pollutants degradation. J Mater Sci: Mater Electron 34, 1222 (2023). https://doi.org/10.1007/s10854-023-10647-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10647-9

Navigation