Skip to main content
Log in

MoS2 as a cocatalyst applied in advanced oxidation processes for enhancing degradation of organic pollutants: a review

  • Review paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Fenton technology, as a typical advanced oxidation processes (AOPs), can generate reactive oxygen species (ROS) of strong oxidation capacity to degrade organic pollutants, which has attracted wide attention. However, it is accompanied by the slow Fe3+/Fe2+ cycle rate, easy to generate iron sludge and so on. Recently, it has been proven that the inorganic cocatalysts represented by MoS2 can effectively solve the above problems. Meanwhile, MoS2 can accelerate the activation of peroxymonosulfate (PMS) and peroxodisulfate (PDS) by Fe2+. In this paper, MoS2 as the cocatalyst in H2O2 + Fe2+, PMS + Fe2+ and PDS + Fe2+ were comprehensively reviewed. Specially, the cycling processes of Fe3+/Fe2+ in different systems, the cocatalytic effect of MoS2 by the exposed active sites, the ROS generation mechanism as well as the microscopic mechanism during the reaction were elaborated emphatically. The results indicate that the reductive active sites on the surface of MoS2 can promote the regeneration of Fe2+ through the cycle between Fe3+/Fe2+ and Mo4+/Mo5+/Mo6+. Thus, ROS such as OH, SO4⋅− and 1O2 with strong oxidizing property can be produced to improve the degradation efficiency of organic pollutants. At last, the challenges and developments of MoS2 cocatalysts in AOPs for practical applications were prospected. This review contributes to a deeper understanding of the cocatalytic effect of two-dimensional metal sulfides in AOPs and facilitates their industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data generated during and/or analysed in this article are available from the corresponding author on reasonable request.

References

  1. Wang JL, Bai ZY. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J. 2017;312:79. https://doi.org/10.1016/j.cej.2016.11.118.

    Article  CAS  Google Scholar 

  2. Wang JL, Zhuan R. Degradation of antibiotics by advanced oxidation processes: an overview. Sci Total Environ. 2020;701:135023. https://doi.org/10.1016/j.scitotenv.2019.135023.

    Article  CAS  PubMed  Google Scholar 

  3. Wang JL, Chen H. Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci Total Environ. 2020;704:135249. https://doi.org/10.1016/j.scitotenv.2019.135249.

    Article  CAS  PubMed  Google Scholar 

  4. Yang F, Hu P, Yang F, Hua XJ, Chen B, Gao L, Wang KS. Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten. 2023. https://doi.org/10.1007/s42864-023-00229-x.

    Article  Google Scholar 

  5. Li Y, Yu B, Liu B, Yu X, Qin G, Fan MH, Zhang YC, Wang LL. Superior Fenton-like and photo-Fenton-like activity of MoS2@TiO2/N-doped carbon nanofibers with phase-regulated and vertically grown MoS2 nanosheets. Chem Eng J. 2023;452(4):139542. https://doi.org/10.1016/j.cej.2022.139542.

    Article  CAS  Google Scholar 

  6. Li Y, Cheng DD, Luo Y, Yang LX. Coaxial Fe2O3/TiO2 nanotubes for enhanced photo-Fenton degradation of electron-deficient organic contaminant. Rare Met. 2021;40:3543. https://doi.org/10.1007/s12598-021-01717-0.

    Article  CAS  Google Scholar 

  7. Chen ZL, Liu GZ, Cao WJ, Yang LX, Zhang LS, Zhang SQ, Zou JP, Song RJ, Fan WH, Luo SL, Dionysiou DD. Amorphous low-coordinated cobalt sulphide nanosheet electrode for electrochemically synthesizing hydrogen peroxide in acid media. Appl Catal B. 2023;334:122825. https://doi.org/10.1016/j.apcatb.2023.122825.

    Article  CAS  Google Scholar 

  8. Yu X, Lu XL, Qin G, Li HM, Li Y, Yang LX, Song ZH, An YF, Yan YR. Large-scale synthesis of flexible TiO2/N-doped carbon nanofibres: a highly efficient all-day-active photocatalyst with electron storage capacity. Ceram Int. 2020;46(8):12538. https://doi.org/10.1016/j.ceramint.2020.02.016.

    Article  CAS  Google Scholar 

  9. Zeng XF, Wang JS, Zhao YN, Zhang WL, Wang MH. Construction of TiO2-pillared multilayer graphene nanocomposites for ciprofloxacin degradation. Int J Miner Metall Mater. 2021;28(3):503. https://doi.org/10.1007/s12613-020-2193-y.

    Article  CAS  Google Scholar 

  10. Wu SY, Wu W, Fan JN, Zhang LP, Zhong Y, Xu H, Mao ZP. Rapid activation of peroxymonosulfate with iron(III) complex for organic pollutants degradation via a non-radical pathway. Water Res. 2023;223:119725. https://doi.org/10.1016/j.watres.2023.119725.

    Article  CAS  Google Scholar 

  11. Zhao HY, Qian L, Chen Y, Wang QN, Zhao GH. Selective catalytic two-electron O2 reduction for onsite efficient oxidation reaction in heterogeneous electro-Fenton process. Chem Eng J. 2018;332:486. https://doi.org/10.1016/j.cej.2017.09.093.

    Article  CAS  Google Scholar 

  12. Wang JL, Tang JT. Fe-based Fenton-like catalysts for water treatment: preparation, characterization and modification. Chemosphere. 2021;276:130177. https://doi.org/10.1016/j.chemosphere.2021.130177.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang YP, Dong KT, Liu Z, Wang HL, Ma SX, Zhang AY, Li M, Yu LQ, Li Y. Sulfurized hematite for photo-Fenton catalysis. Prog Nat Sci Mater Int. 2017;27(4):443. https://doi.org/10.1016/j.pnsc.2017.08.006.

    Article  CAS  Google Scholar 

  14. Liu Y, Wang JL. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: a critical review. Chem Eng J. 2023;466:143147. https://doi.org/10.1016/j.cej.2023.143147.

    Article  CAS  Google Scholar 

  15. Liu Y, Zhao Y, Wang JL. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects. J Hazard Mater. 2021;404:124191. https://doi.org/10.1016/j.jhazmat.2020.124191.

    Article  CAS  PubMed  Google Scholar 

  16. Li ZT, Gu YF, Li FT. Heterogeneous Fenton system with dual working mechanisms for aqueous pollutants degradation. J Environ Chem Eng. 2022;10(3):107686. https://doi.org/10.1016/j.jece.2022.107686.

    Article  CAS  Google Scholar 

  17. Li M, Song JY, Han W, Yeung KL, Zhou SQ, Mo CH. Iron-organic frameworks as effective fenton-like catalysts for peroxymonosulfate decomposition in advanced oxidation processes. NPJ Clean Water. 2023;6:37. https://doi.org/10.1038/s41545-023-00251-z.

    Article  CAS  Google Scholar 

  18. Meyerstein D. Re-examining Fenton and Fenton-like reactions. Nat Rev Chem. 2021;5:595. https://doi.org/10.1038/s41570-021-00310-4.

    Article  CAS  PubMed  Google Scholar 

  19. Wang JL, Wang SZ. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. 2018;334:1502. https://doi.org/10.1016/j.cej.2017.11.059.

    Article  CAS  Google Scholar 

  20. Wang JL, Wang SZ. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism. Chem Eng J. 2020;401:126158. https://doi.org/10.1016/j.cej.2020.126158.

    Article  CAS  Google Scholar 

  21. Li JY, Cao HY, Qi HY, Li YX, Zhu S, Ye X, Zhang JT, Yu ZF, Zhu J, Zhao X. Efficiently activating peroxymonosulfate by CoFe-LDHs/MoS2 for rapid degradation of tetracycline. J Water Process Eng. 2023;53:103856. https://doi.org/10.1016/j.jwpe.2023.103856.

    Article  Google Scholar 

  22. Li J, Li YJ, Xiong ZK, Yao G, Lai B. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review. Chin Chem Lett. 2019;30(12):2139. https://doi.org/10.1016/j.cclet.2019.04.057.

    Article  CAS  Google Scholar 

  23. Li JY, Yan CM, Sun DD, Ma HC, Wang GW, Ma C, Hao J. Peroxymonosulfate activation by magnetic CoNi-MOF catalyst for degradation of organic dye. Environ Sci Pollut Res. 2023;30:70371. https://doi.org/10.1007/s11356-023-27369-4.

    Article  CAS  Google Scholar 

  24. Manoli K, Morrison LM, Sumarah MW, Nakhla G, Ray AK, Sharma VK. Pharmaceuticals and pesticides in secondary effluent wastewater: identification and enhanced removal by acid-activated ferrate(VI). Water Res. 2019;148:272. https://doi.org/10.1016/j.watres.2018.10.056.

    Article  CAS  PubMed  Google Scholar 

  25. Narendra Kumar AV, Shin WS. Yolk-shell Fe2O3@mesoporous hollow carbon sphere hybrid sub-micro reactors for effective degradation of organic contaminants. Chem Eng J. 2023;465:142922. https://doi.org/10.1016/j.cej.2023.142922.

    Article  CAS  Google Scholar 

  26. Lu YX, Liu YJ, Tang CH, Chen J, Liu G. Heat/PMS degradation of atrazine: theory and kinetic studies. Processes. 2022;10(5):2227. https://doi.org/10.3390/pr10050941.

    Article  CAS  Google Scholar 

  27. Wang SL, Wu JF, Lu XQ, Xu WX, Gong Q, Ding JQ, Dan BS, Xie PC. Removal of acetaminophen in the Fe2+/persulfate system: kinetic model and degradation pathways. Chem Eng J. 2019;358:1091. https://doi.org/10.1016/j.cej.2018.09.145.

    Article  CAS  Google Scholar 

  28. Yan HX, Pan YS, Liao XB, Zhu Y, Yin CJ, Huang R, Pan CL. Enhancement of Fe /Fe cycles by the synergistic effect between photocatalytic and co-catalytic of Znx Cd1−x S on photo-Fenton system. Appl Surf Sci. 2022;576:151881. https://doi.org/10.1016/j.apsusc.2021.151881

    Article  CAS  Google Scholar 

  29. Quang HHP, Dinh NT, Thi TNT, Bao LTN, Yuvakkumar R, Nguyen VH. Fe2+, Fe3+, Co2+ as highly efficient cocatalysts in the homogeneous electro-Fenton process for enhanced treatment of real pharmaceutical wastewater. J Water Process Eng. 2022;46:102635. https://doi.org/10.1016/j.jwpe.2022.102635.

    Article  Google Scholar 

  30. Bao T, Jin J, Damtie MM, Wu K, Yu ZM, Wang L, Chen J, Zhang Y, Frost RL. Green synthesis and application of nanoscale zero-valent iron/rectorite composite material for P-chlorophenol degradation via heterogeneous Fenton reaction. J Saudi Chem Soc. 2019;23(7):864. https://doi.org/10.1016/j.jscs.2019.02.001.

    Article  CAS  Google Scholar 

  31. Wang RL, Kuwahara Y, Mori K, Qian XF, Zhao YX, Yamashita H. Modification of Ti-doped hematite photoanode with quasi-molecular cocatalyst: a comparison of improvement mechanism between non-noble and noble metals. Chemsuschem. 2021;14(10):2180. https://doi.org/10.1002/cssc.202100451.

    Article  CAS  PubMed  Google Scholar 

  32. Farooq U, Wang F, Shang JY, Zeeshan Shahid M, Akram W, Wang XH. Heightening effects of cysteine on degradation of trichloroethylene in Fe3+/SPC process. Chem Eng J. 2023;454: 139996. https://doi.org/10.1016/j.cej.2022.139996.

    Article  CAS  Google Scholar 

  33. Zhao JF, Wang Q, Fu YS, Peng B, Zhou GF. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2+. Environ Sci Pollut Res. 2018;25:22998. https://doi.org/10.1007/s11356-018-2375-6.

    Article  CAS  Google Scholar 

  34. Bhattacharyya A, Schmidt MP, Stavitski E, Azimzadeh B, Martínez CE. Ligands representing important functional groups of natural organic matter facilitate Fe redox transformations and resulting binding environments. Geochim Cosmochim Acta. 2019;251:157. https://doi.org/10.1016/j.gca.2019.02.027.

    Article  CAS  Google Scholar 

  35. Villegas-Guzman P, Giannakis S, Torres-Palma RA, Pulgarin C. Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Appl Catal B. 2017;205:219. https://doi.org/10.1016/j.apcatb.2016.12.021.

    Article  CAS  Google Scholar 

  36. Amorphous cobalt sulphide introduced atomic H*/H+ for H2O2 electrosynthesis and enhanced Fe(II) regeneration in electro-Fenton process at macroneutral Ph. Chem Eng J. 2023;474:145581. https://doi.org/10.1016/j.cej.2023.145581.

  37. Ma JQ, Yang QF, Wen YZ, Liu WP. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range. Appl Catal B. 2017;201:232. https://doi.org/10.1016/j.apcatb.2016.08.048.

    Article  CAS  Google Scholar 

  38. Ma MY, Yu HZ, Deng LM, Wang LQ, Liu SY, Pan H, Ren JW, Yu MM, Hu F, Peng SJ. Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten. 2023;5(4):589. https://doi.org/10.1007/s42864-023-00212-6.

    Article  Google Scholar 

  39. Qi YF, Li J, Zhang YQ, Cao Q, Si YM, Wu ZR, Akram M, Xu X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway. Appl Catal B. 2021;286:119910. https://doi.org/10.1016/j.apcatb.2021.119910.

    Article  CAS  Google Scholar 

  40. Gao Y, Yang CD, Zhou M, He C, Cao SJ, Long YP, Li S, Lin Y, Zhu PX, Cheng C. Transition metal and Metal–Nx modoped MOF-derived Fenton-like catalysts: a comparative study on single atoms and nanoparticles. Small. 2020;16(50):2005060. https://doi.org/10.1002/smll.202005060.

    Article  CAS  Google Scholar 

  41. Wan ST, Li HT, Ma ZH, Zhang HC, Zheng YZ. 2D/2D heterostructured MoS2/PtSe2 promoting charge separation in FTO thin film for efficient and stable photocatalytic hydrogen evolution. Rare Met. 2022;41(5):1735. https://doi.org/10.1007/s12598-021-01954-3.

    Article  CAS  Google Scholar 

  42. Yuan JS, Zhang Y, Zhang XY, Zhao L, Shen HL, Zhang SG. Template free synthesis of core-shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment. Int J Miner Metall Mater. 2023;30(1):177. https://doi.org/10.1007/s12613-022-2473-9.

    Article  CAS  Google Scholar 

  43. Fu YH, Li ZJ, Liu QQ, Yang XF, Tang H. Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity. Chin J Catal. 2017;38(12):2160. https://doi.org/10.1016/S1872-2067(17)62911-5.

    Article  CAS  Google Scholar 

  44. Yu HG, Cao GQ, Chen F, Wang XF, Yu JG, Lei M. Enhanced photocatalytic performance of Ag3PO4 by simutaneous loading of Ag nanoparticles and Fe(III) cocatalyst. Appl Catal B. 2014;160–161:658. https://doi.org/10.1016/j.apcatb.2014.06.015.

    Article  CAS  Google Scholar 

  45. Zhao W, Liu Y, Wei ZB, Yang SG, He H, Sun C. Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Appl Catal B. 2016;185:242. https://doi.org/10.1016/j.apcatb.2015.12.023.

    Article  CAS  Google Scholar 

  46. Li Y, Yu B, Li HM, Liu B, Yu X, Zhang KW, Qin G, Lu JH, Zhang LH, Wang LL. Activation of hydrogen peroxide by molybdenum disulfide as Fenton-like catalyst and cocatalys: phase-dependent catalytic performance and degradation mechanism. Chin Chem Lett. 2023;34(5):107874. https://doi.org/10.1016/j.cclet.2022.107874.

    Article  CAS  Google Scholar 

  47. Hao CJ, Li J, Zhang ZL, Ji YJ, Zhan HH, Xiao FX, Wang D, Liu B, Su FB. Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation. Appl Surf Sci. 2015;331:17. https://doi.org/10.1016/j.apsusc.2015.01.069.

    Article  CAS  Google Scholar 

  48. Ouyang Q, Kou FY, Zhang NQ, Lian JT, Tu GQ, Fang ZQ. Tea polyphenols promote Fenton-like reaction: pH self-driving chelation and reduction mechanism. Chem Eng J. 2019;366:514. https://doi.org/10.1016/j.cej.2019.02.078.

    Article  CAS  Google Scholar 

  49. Xing MY, Xu WJ, Dong CC, Bai YC, Zeng JB, Zhou Y, Zhang JL, Yin YD. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem. 2018;4(6):1359. https://doi.org/10.1016/j.chempr.2018.03.002.

    Article  CAS  Google Scholar 

  50. Li L, Han Q, Wang L, Liu B, Wang KK, Wang ZY. Dual roles of MoS2 nanosheets in advanced oxidation processes: activating permonosulfate and quenching radicals. Chem Eng J. 2022;440:135866. https://doi.org/10.1016/j.cej.2022.135866.

    Article  CAS  Google Scholar 

  51. Zhang YD, Fu LJ, Tian F, Huang Y, Li XL, Gu YQ, Yang GH, Qu LL, Yang HP. Designing carbon nanotube sponge/Au@MgO2 for surface-enhanced Raman scattering detection and fenton-like degradation of organic pollutants. Talanta. 2023;265:124835. https://doi.org/10.1016/j.talanta.2023.124835.

    Article  CAS  PubMed  Google Scholar 

  52. Wang YG, Duan HY, Li H, Zhen JZ, Lv WY. Efficient activation of peroxymonosulfate by MoS2 intercalated MgCuFe layered double hydroxide for phenol pollutant control. J Environ Chem Eng. 2023;11(2):109502. https://doi.org/10.1016/j.jece.2023.109502.

    Article  CAS  Google Scholar 

  53. Huang XQ, Niu YL, Hu WH. Fe/Fe3C nanoparticles loaded on Fe/N-doped graphene as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Colloids Surf A. 2017;518:145. https://doi.org/10.1016/j.colsurfa.2017.01.039.

    Article  CAS  Google Scholar 

  54. Yang Y, Wang QQ, Aleisa R, Zhao TT, Ma SC, Zhang GX, Yao TJ, Yin YD. MoS2/FeS nanocomposite catalyst for efficient Fenton reaction. ACS Appl Mater Interfaces. 2021;13(4):51829. https://doi.org/10.1021/acsami.1c02864.

    Article  CAS  PubMed  Google Scholar 

  55. Guo XJ, Jia JL, Gao P, Zhang T, Zha F, Tang XH, Tian HF, Zuo ZJ. Flower-like FeMoO4@1T-MoS2 micro-sphere for effectively cleaning binary dyes via photo-Fenton oxidation. J Colloid Interface Sci. 2022;622:284. https://doi.org/10.1016/j.jcis.2022.04.113.

    Article  CAS  PubMed  Google Scholar 

  56. Wang TL, Hu X, Zhang XD, Cao HY, Huang YM, Feng P. MoS2 QDs co-catalytic Fenton reaction for highly sensitive photoluminescence sensing of H2O2 and glucose. Anal Methods. 2019;11(4):415. https://doi.org/10.1039/C8AY02565G.

    Article  CAS  Google Scholar 

  57. Zhu LL, Ji JH, Liu J, Mine S, Matsuoka M, Zhang JL, Xing MY. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew Chem Int Ed. 2020;59(33):13968. https://doi.org/10.1002/anie.202006059.

    Article  CAS  Google Scholar 

  58. Yan QY, Lian C, Huang K, Liang LH, Yu HR, Yin PC, Zhang JL, Xing MY. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew Chem Int Edit. 2021;60(31):17155. https://doi.org/10.1002/anie.202105736.

    Article  CAS  Google Scholar 

  59. Li ZL, Zhang L, Wang L, Yu WG, Zhang SX, Li XQ, Zhai SR. Engineering the electronic structure of two-dimensional MoS2 by Ni dopants for pollutant degradation. Sep Purif Technol. 2023;314:123637. https://doi.org/10.1016/j.seppur.2023.123637.

    Article  CAS  Google Scholar 

  60. Duan PJ, Liu XN, Liu BH, Akram M, Li YW, Pan JW, Yue QY, Gao BY, Xu X. Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism. Appl Catal B. 2021;298:120532. https://doi.org/10.1016/j.apcatb.2021.120532.

    Article  CAS  Google Scholar 

  61. Zhu WK, Han MS, Kim D, Park J, Choi H, Kwon G, You J, Li S, Park T, Kim J. Highly catalytic and durable nanocellulose fibers-based nanoporous membrane film for efficient organic pollutant degradation. J Water Process Eng. 2023;53:103620. https://doi.org/10.1016/j.jwpe.2023.103620.

    Article  Google Scholar 

  62. Li XG, Wang QD, Zheng XY, Wang L, Zhang W, Song W, Li YF, Pan WY, Zhao TY, Yan LG. (NH4)2Mo3S13/MnFe2O4 hybrid with multiple active sites boosted activation of peroxymonosulfate for removal of tetracycline. Environ Sci Pollut Res. 2023;30:67485. https://doi.org/10.1007/s11356-023-26967-6.

    Article  CAS  Google Scholar 

  63. Kottapurath Vijay A, Marks V, Mizrahi A, Wen YH, Ma XM, Sharma VK, Meyerstein D. Reaction of FeaqII with peroxymonosulfate and peroxydisulfate in the presence of bicarbonate: formation of FeaqIV and carbonate radical anions. Environ Sci Technol. 2023;57(16):6743. https://doi.org/10.1021/acs.est.3c00182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu MH, Gu XG, Lu SG, Qiu ZF, Sui Q, Miao ZW, Zang XK, Wu XL. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. J Hazard Mater. 2015;286:7. https://doi.org/10.1016/j.jhazmat.2014.12.031.

    Article  CAS  PubMed  Google Scholar 

  65. Ghauch A, Ayoub G, Naim S. Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem Eng J. 2013;228:1168. https://doi.org/10.1016/j.cej.2013.05.045.

    Article  CAS  Google Scholar 

  66. Ma QL, Zhang XY, Guo RN, Zhang HX, Cheng QF, Xie MZ, Cheng XW. Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants. Sep Purif Technol. 2019;210:335. https://doi.org/10.1016/j.seppur.2018.06.060.

    Article  CAS  Google Scholar 

  67. Guo YP, Zeng ZQ, Li YL, Huang ZG, Yang JY. Catalytic oxidation of 4-chlorophenol on in-situ sulfur-doped activated carbon with sulfate radicals. Sep Purif Technol. 2017;179:257. https://doi.org/10.1016/j.seppur.2017.02.006.

    Article  CAS  Google Scholar 

  68. Lei YX, Guo X, Jiang MJ, Sun W, He H, Chen Y, Thummavichai K, Ola O, Zhu YQ, Wang NN. Co-ZIF reinforced cow manure biochar (CMB) as an effective peroxymonosulfate activator for degradation of carbamazepine. Appl Catal B. 2022;319:121932. https://doi.org/10.1016/j.apcatb.2022.121932.

    Article  CAS  Google Scholar 

  69. Zhang YB, Li M, Zhang Q, Li ZF, Zhong M, Li JW, Abodif AM. Iron phthalocyanine doped carbon-based as a bifunctional material for peroxymonosulfate activation toward Reactive Red 24 degradation: consolidated adsorption and multiple oxidation. J Water Process Eng. 2023;51:103476. https://doi.org/10.1016/j.jwpe.2022.103476.

    Article  Google Scholar 

  70. Fang HW, Gao JY, Wang J, Xu JX, Wang L. Oxygen-doped and pyridine-grafted g-C3N4 for visible-light driven peroxymonosulfate activation: insights of enhanced tetracycline degradation mechanism. Sep Purif Technol. 2023;314:123565. https://doi.org/10.1016/j.seppur.2023.123565.

    Article  CAS  Google Scholar 

  71. Kakavandi B, Zehtab Salmasi M, Ahmadi M, Naderi A, Roccaro P, Bedia J, Hasham Firooz M, Rezaei KR. Spinel cobalt ferrite-based porous activated carbon in conjunction with UV light irradiation for boosting peroxymonosulfate oxidation of bisphenol A. J Environ Manag. 2023;342:118242. https://doi.org/10.1016/j.jenvman.2023.118242.

    Article  CAS  Google Scholar 

  72. Xie RJ, Ji J, Guo KH, Lei DX, Fan QJ, Leung DYC, Huang HB. Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: roles of sulfate and hydroxyl radicals. Chem Eng J. 2019;356:632. https://doi.org/10.1016/j.cej.2018.09.025.

    Article  CAS  Google Scholar 

  73. Nasseri S, Mahvi AH, Seyedsalehi M, Yaghmaeian K, Nabizadeh R, Alimohammadi M, Safari GH. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: effect of radical scavenger and water matrix. J Mol Liq. 2017;241:704. https://doi.org/10.1016/j.molliq.2017.05.137.

    Article  CAS  Google Scholar 

  74. Nie G, Xiao L, Bi JX, Wang SB, Duan XG. New insight to piezocatalytic peroxymonosulfate activation: the critical role of dissolved oxygen in mediating radical and nonradical pathways. Appl Catal B. 2022;315:121584. https://doi.org/10.1016/j.apcatb.2022.121584.

    Article  CAS  Google Scholar 

  75. Cao F, Yang L, Zhang YF, Zhao XY, Lu H, Wang JL. Peroxymonosulfate activation in ultrasound-driven molybdenum disulfide piezocatalysis: the effect of sulfur vacancy. J Clean Prod. 2022;380:135002. https://doi.org/10.1016/j.jclepro.2022.135002.

    Article  CAS  Google Scholar 

  76. Ioannidi A, Oulego P, Collado S, Petala A, Arniella V, Frontistis Z, Angelopoulos GN, Diaz M, Mantzavinos D. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water. J Environ Manag. 2020;270:110820. https://doi.org/10.1016/j.jenvman.2020.110820.

    Article  CAS  Google Scholar 

  77. Zhao QH, Yin WW, Sarwar MT, Gao C, Yuan KH, Yang HM. Thermal annealing-enhanced interfacial charge transfer in g-C3N4/rectorite composite for boosted peroxymonosulfate activation. J Environ Chem Eng. 2023;11(2):109491. https://doi.org/10.1016/j.jece.2023.109491.

    Article  CAS  Google Scholar 

  78. Liu HX, Dai HX, Wu S, Li N, Yan BB, Chen GY. Thermal effect on sulfamethoxazole degradation in a trivalent copper involved peroxymonosulfate system. J Colloid Interface Sci. 2023;640:121. https://doi.org/10.1016/j.jcis.2023.02.102.

    Article  CAS  PubMed  Google Scholar 

  79. Sheng B, Yang F, Wang YH, Wang ZH, Li Q, Guo YG, Lou XY, Liu JS. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS. Chem Eng J. 2019;375:121989. https://doi.org/10.1016/j.cej.2019.121989.

    Article  CAS  Google Scholar 

  80. Cheng XX, Liang H, Ding A, Tang XB, Liu B, Zhu XW, Gan ZD, Wu DJ, Li GB. Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: control of natural organic matter fouling and degradation of atrazine. Water Res. 2017;113:32. https://doi.org/10.1016/j.watres.2017.01.055.

    Article  CAS  PubMed  Google Scholar 

  81. Huang Y, Wang ZH, Fang CL, Liu WQ, Lou XY, Liu JS. Importance of reagent addition order in contaminant degradation in an Fe(II)/PMS system. RSC Adv. 2016;6(74):70271. https://doi.org/10.1039/C6RA14081E.

    Article  CAS  Google Scholar 

  82. Ling X, Cai AH, Chen MJ, Sun HL, Xu SL, Huang ZY, Li XY, Deng J. A comparison of oxidation and re-flocculation behaviors of Fe2+/PAA and Fe2+/H2O2 treatments for enhancing sludge dewatering: a mechanism study. Sci Total Environ. 2022;847:157690. https://doi.org/10.1016/j.scitotenv.2022.157690.

    Article  CAS  PubMed  Google Scholar 

  83. Peng H, Chen R, Tao NY, Xiao YY, Li CX, Zhang TQ, Ye MM. MoS2 boosts the Fe2+/PMS process for carbamazepine degradation. Environ Sci Pollut Res. 2022;29:49267. https://doi.org/10.1007/s11356-022-19172-4.

    Article  CAS  Google Scholar 

  84. Lu J, Zhou Y, Zhou YB. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem Eng J. 2021;422:130126. https://doi.org/10.1016/j.cej.2021.130126.

    Article  CAS  Google Scholar 

  85. Tan WY, Tang XQ, Dou L, Zhang H. Preparation of La-doped Bi2WO6 with rich oxygen vacancies and enhanced photocatalytic performance for removal of Rhodamine B. Inorg Chem Commun. 2022;146:110239. https://doi.org/10.1016/j.inoche.2022.110239.

    Article  CAS  Google Scholar 

  86. Chu YY, Zheng XL, Fan JR. Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H2O2 via two-electron oxygen reduction and the degradation of 2,4-DCP via photocatalytic oxidation coupled with Fenton oxidation. Chem Eng J. 2022;431:134020. https://doi.org/10.1016/j.cej.2021.134020.

    Article  CAS  Google Scholar 

  87. Aslam A, Abid MZ, Rafiq K, Rauf A, Hussain E. Tunable sulphur doping on CuFe2O4 nanostructures for the selective elimination of organic dyes from water. Sci Rep. 2023;13:6306. https://doi.org/10.1038/s41598-023-33185-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xiao C, Hu YY, Li QT, Liu JY, Li X, Shi YY, Chen YC, Cheng JH. Carbon-doped defect MoS2 co-catalytic Fe3+/peroxymonosulfate process for efficient sulfadiazine degradation: accelerating Fe3+/Fe2+ cycle and 1O2 dominated oxidation. Sci Total Environ. 2023;858:159587. https://doi.org/10.1016/j.scitotenv.2022.159587.

    Article  CAS  PubMed  Google Scholar 

  89. Luo HY, Wan Y, Li J, Cai YH, Dang Z, Yin H. MgxCu-biochar activated peroxydisulfate triggers reductive species for the reduction and enhanced electron-transfer degradation of electron-deficient aromatic pollutants. J Hazard Mater. 2023;452:131267. https://doi.org/10.1016/j.jhazmat.2023.131267.

    Article  CAS  PubMed  Google Scholar 

  90. Yao SH, Wang B, Cao X. Multiaperture g-C3N4@SiO2 to activate peroxydisulfate via visible light for efficient Rhodamine B removal. Environ Sci Pollut Res. 2023;30:75500. https://doi.org/10.1007/s11356-023-27782-9.

    Article  CAS  Google Scholar 

  91. Wang ZJ, Bao JG, He HZ, Mukherji S, Luo LT, Du JK. Single-Atom iron catalyst activating peroxydisulfate for efficient organic contaminant degradation relying on electron transfer. Chem Eng J. 2023;458:141513. https://doi.org/10.1016/j.cej.2023.141513.

    Article  CAS  Google Scholar 

  92. Matzek LW, Carter KE. Activated persulfate for organic chemical degradation: a review. Chemosphere. 2016;151:178. https://doi.org/10.1016/j.chemosphere.2016.02.055.

    Article  CAS  PubMed  Google Scholar 

  93. Rui JC, Deng N, Zhao YY, Tao C, Zhou JZ, Zhao ZZ, Huang X. Activation of persulfate via Mn doped Mg/Al layered double hydroxide for effective degradation of organics: insights from chemical and structural variability of catalyst. Chemosphere. 2022;302:134849. https://doi.org/10.1016/j.chemosphere.2022.134849.

    Article  CAS  PubMed  Google Scholar 

  94. Sun YG, Xiong RJ, Zhang J, Ma YL, Li YY, Ji WX, Ma YH, Wang Z. Insight into synergetic mechanism of CuyMn5-yOx/hG-activated peroxydisulfate enhances tetracycline antibiotics degradation and toxicity assessment. Sep Purif Technol. 2022;293:121066. https://doi.org/10.1016/j.seppur.2022.121066.

    Article  CAS  Google Scholar 

  95. Zhang H, Ji QQ, Lai LD, Yao G, Lai B. Degradation of p-nitrophenol (PNP) in aqueous solution by mFe/Cu-air-PS system. Chin Chem Lett. 2019;30(5):1129. https://doi.org/10.1016/j.cclet.2019.01.025.

    Article  CAS  Google Scholar 

  96. Song HR, Yan LX, Jiang J, Ma J, Zhang ZX, Zhang JM, Liu PX, Yang T. Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation? Water Res. 2018;128:393. https://doi.org/10.1016/j.watres.2017.10.018.

    Article  CAS  PubMed  Google Scholar 

  97. Monteagudo JM, Durán A, González R, Expósito AJ. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl Catal, B. 2015;176–177:120. https://doi.org/10.1016/j.apcatb.2015.03.055.

    Article  CAS  Google Scholar 

  98. Mogharbel R, Liu MQ, Zou SL, Yestrebsky C. Degradation and statistical optimization of 3,5,6-trichloro-2-pyridinol by zero valent iron-activated persulfate. Korean J Chem Eng. 2019;36:540. https://doi.org/10.1007/s11814-018-0222-6.

    Article  CAS  Google Scholar 

  99. Kuang HN, He ZY, Li M, Huang RF, Zhang YQ, Xu XM, Wang L, Chen Y, Zhao SF. Enhancing co-catalysis of MoS2 for persulfate activation in Fe3+-based advanced oxidation processes via defect engineering. Chem Eng J. 2021;417:127987. https://doi.org/10.1016/j.cej.2020.127987.

    Article  CAS  Google Scholar 

  100. Wang SL, Xu WX, Wu JF, Gong Q, Xie PC. Improved sulfamethoxazole degradation by the addition of MoS2 into the Fe2+/peroxymonosulfate process. Sep Purif Technol. 2020;235:116170. https://doi.org/10.1016/j.seppur.2019.116170.

    Article  CAS  Google Scholar 

  101. Zhu YC, Wang F, Zhou BH, Chen HL, Yuan RF, Zhang YY, Geng HH, Liu YX, Wang H. Photo-assisted Fe2+ modified molybdenum disulfide activated potassium persulfate to degrade sulfadiazine: insights into the degradation pathway and mechanism from density functional theory. Chem Eng J. 2022;435:134904. https://doi.org/10.1016/j.cej.2022.134904.

    Article  CAS  Google Scholar 

  102. Song XM, Tian JY, Shi WX, Cui FY, Yuan YX. Significant acceleration of Fe2+/peroxydisulfate oxidation towards sulfisoxazole by addition of MoS2. Environ Res. 2020;188:109692. https://doi.org/10.1016/j.envres.2020.109692.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52370073, 5236005), Program for Science and Technology Innovation Team in Universities of Henan Province (24IRTSTHN017), Natural Science Foundation of Henan Province (212300410336), Key Scientific and Technological Project of Henan Province (222102320188), Key Project of Science and Technology Research of Henan Provincial Department of Education (21A430008), Jiangxi Provincial Natural Science Foundation (20224ACB213010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Li or Wei-Ya Huang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, MH., Wang, CH., Yu, X. et al. MoS2 as a cocatalyst applied in advanced oxidation processes for enhancing degradation of organic pollutants: a review. Tungsten 6, 473–487 (2024). https://doi.org/10.1007/s42864-023-00252-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00252-y

Keywords

Navigation