Skip to main content
Log in

High-sensitive MwCNTs/CMC/PDMS flexible capacitive pressure sensor prepared through ice template method and its wearable applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, pressure sensors with high sensitivity and flexibility have been widely used in the fields of wearable electronics, soft robots, medical monitoring, and so on. In this paper, a through-hole structure comprising of multi-walled carbon nanotubes (MwCNTs)/carboxymethyl cellulose (CMC)/polydimethylsiloxane (PDMS) was constructed through an ice template method and then it functioned as the dielectric layer of a newly made flexible capacitive pressure sensor. The sensitivity, stability, response time, and human applicability of the sensor were fully studied. The experimental method with ice template has the advantages of environmental protection and safety. More importantly, through the regulation of chemical composition, the porous sponge can have a specific pore morphology. The experimental e results showed that the dielectric layer with a through-hole structure had been built successfully and the PDMS resin was impregnated into the through-hole structure. The MwCNTs/CMC/PDMS capacitive pressure sensor possessed a high sensitivity (~ 2.143 kPa−1) and good stability in the low-pressure range (0–1 kPa). Moreover, a low detection limit (~ 3 Pa) and fast response time (~ 250 ms) were obtained. Human applicability tests revealed that our flexible sensor could catch the response of the human body swiftly so that it exhibited bright application prospects in wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. K. Omri, N. Alonizan, J. Mater. Sci.: Mater. Electron. 33, 15448–15459 (2022)

    CAS  Google Scholar 

  2. K. Omri, S. Gouadria, M. Madani, S. Mnefgui, N. Alonizan, F. Alharbi, J. Mater. Sci.: Mater. Electron. 34, 444 (2023)

    CAS  Google Scholar 

  3. W. Li, L. Xiong, Y. Pu, Y. Quan, S. Li, Nanoscale Res. Lett. 14, 1–7 (2019)

    Google Scholar 

  4. L. Tong, X.X. Wang, X.X. He, G.D. Nie, J. Zhang, B. Zhang, W.Z. Guo, Y.Z. Long, Nanoscale Res. Lett. 13, 1–8 (2018)

    CAS  Google Scholar 

  5. S.H. Ha, S.H. Ha, M.B. Jeon, H.C. Ji, J.M. Kim, Nanoscale 10, 5105–5113 (2018)

    CAS  Google Scholar 

  6. R. Shi, Z. Lou, S. Chen, G. Shen, Sci. China Mater. 61, 1587–1595 (2018)

    CAS  Google Scholar 

  7. Y. Kim, S. Jang, J.H. Oh, Microelectron. Eng. 215, 111002 (2019)

    Google Scholar 

  8. M. Liu, L. Yu, S. Vudayagiri, A.L. Skov, Int. J. Smart Nano Mater. 11, 11–23 (2020)

    CAS  Google Scholar 

  9. X. Wei, X. Cao, Y. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, Compos. Sci. Technol. 149, 166–177 (2017)

    CAS  Google Scholar 

  10. I. Trase, Z. Xu, Z. Chen, H. Tan, J.X.J. Zhang, Sens. Actuators A 303, 111655 (2020)

    CAS  Google Scholar 

  11. G. Gang, Y. Cai, Q. Dong, Y. Zhang, J. Shao, H. Wei, X. Dong, Nanoscale 10, 10033–10040 (2018)

    Google Scholar 

  12. X. Wang, Z. Liu, T. Zhang, Small 13, 1602790 (2017)

    Google Scholar 

  13. T. Cai, Y. Yang, T. Bi, E. Bi, Y. Li, Nanotechnology 31, 24LT01 (2020)

    CAS  Google Scholar 

  14. T. Jin, Y. Pan, G.J. Jeon, H.I. Yeom, S. Zhang, K.W. Paik, S.K. Park, ACS Appl. Mater. Interfaces 12, 13348–13359 (2020)

    CAS  Google Scholar 

  15. T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015–1022 (2010)

    CAS  Google Scholar 

  16. S.G. Yoon, S.T. Chang, J. Mater. Chem. C 5, 1910–1919 (2017)

    CAS  Google Scholar 

  17. B.S. Prakash, K. Varma, Compos. Sci. Technol. 67, 2363–2368 (2007)

    CAS  Google Scholar 

  18. S.W. Kim, H.R. Choi, C.S. Han, D.B. Kim, J.W. Kim, Y.S. Cho, RSC Adv. 7, 56038–56043 (2017)

    CAS  Google Scholar 

  19. S.A. Mohd Chachuli, M.N. Hamidon, M.S. Mamat, M. Ertugrul, N.H. Abdullah, Mater. Sci. Semicond. Process. 99, 140–148 (2019)

    CAS  Google Scholar 

  20. R. Su, Z. Luo, D. Zhang, Y. Liu, Z. Wang, J. Li, J. Bian, Y. Li, X. Hu, J. Gao, Y. Yang, J. Phys. Chem. C 120, 11769–11776 (2016)

    CAS  Google Scholar 

  21. A. Rana, J.P. Roberge, V.J. I, S.J. Duchaine, IEEE Sens. J. 16, 7853–7863 (2016)

    CAS  Google Scholar 

  22. A. Chhetry, S. Sharma, H. Yoon, S. Ko, J.Y. Park, Adv. Funct. Mater. 30, 1910020 (2020)

    CAS  Google Scholar 

  23. J. Jia, G. Huang, J. Deng, K. Pan, Nanoscale 11, 4258–4266 (2019)

    CAS  Google Scholar 

  24. X. Wu, X. Liu, J. Wang, J. Huang, S. Yang, ACS Appl. Mater. Interfaces 10, 39009–39017 (2018)

    CAS  Google Scholar 

  25. Y. Zhang, X. Guo, W. Wang, L. Chen, L. Liu, H. Liu, Y. He, IEEE Sens. J. 20, 14118–14125 (2020)

    CAS  Google Scholar 

  26. T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong, H. Ding, Y. Gu, Z. Liu, T. Zhang, Small 12, 5042–5048 (2016)

    CAS  Google Scholar 

  27. A.A. Saberi, Phys. Rep. 578, 1–32 (2015)

    Google Scholar 

  28. H. Xu, X. Yin, M. Li, X. Li, X. Li, X. Dang, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 11, 22628–22636 (2019)

    CAS  Google Scholar 

  29. L. Ma, X. Shuai, Y. Hu, X. Liang, P. Zhu, R. Sun, C. Wong, J. Mater. Chem. C 6, 13232–13240 (2018)

    CAS  Google Scholar 

  30. Z. He, W. Chen, B. Liang, C. Liu, L. Yang, D. Lu, Z. Mo, H. Zhu, Z. Tang, X. Gui, ACS Appl. Mater. Interfaces 10, 12816–12823 (2018)

    CAS  Google Scholar 

  31. M. Li, J. Liang, X. Wang, M. Zhang, Sensors 20, 371 (2020)

    Google Scholar 

  32. Q. Zhang, W. Jia, C. Ji, Z. Pei, Z. Jing, Y. Cheng, W. Zhang, K. Zhuo, J. Ji, Z. Yuan, S. Sang, Smart Mater. Struct. 28, 115040 (2019)

    CAS  Google Scholar 

  33. Y. Jung, W. Lee, K. Jung, B. Park, J. Park, J. Ko, H. Cho, Polymers 12, 1412 (2020)

    CAS  Google Scholar 

  34. Y. Sekertekin, I. Bozyel, D. Gokcen, Sensors 20, 2908 (2020)

    CAS  Google Scholar 

  35. X. You, J. He, N. Nan, X. Sun, K. Qi, Y. Zhou, W. Shao, F. Liu, S. Cui, J. Mater. Chem. C 6, 12981–12991 (2018)

    CAS  Google Scholar 

  36. F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Nano Lett. 12, 3109–3114 (2012)

    CAS  Google Scholar 

  37. V.L. Trinh, C.K. Chung, Small 13, 1700373 (2017)

    Google Scholar 

  38. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311, 515–518 (2006)

    CAS  Google Scholar 

  39. J.H. Kim, J.H. Lee, T.Y. Yang, S.Y. Yoon, B.K. Kim, H.C. Park, Ceram. Int. 37, 2317–2322 (2011)

    CAS  Google Scholar 

  40. S. Deville, J. Mater. Res. 28, 2202–2219 (2013)

    CAS  Google Scholar 

  41. H. Niu, S. Gao, W. Yue, Y. Li, W. Zhou, H. Liu, Small 16, 1904774 (2020)

    CAS  Google Scholar 

  42. P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Nano-Micro Lett. 11, 1–37 (2019)

    Google Scholar 

  43. K. Kea, M. McMasterb, W. Christophersonb, Composites A 126, 105614 (2019)

    Google Scholar 

Download references

Funding

This work was supported by the Youth Foundation Fund of Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No. 552022000306).

Author information

Authors and Affiliations

Authors

Contributions

HP conceived and designed the experiments, and HZ supervised the complete research. FW prepared the samples, performed the experiments, and HL and XY collected and anlyzed the data. The manuscript was writed by HP and revised by HL.

Corresponding authors

Correspondence to Feifei Wang or Huarong Zeng.

Ethics declarations

Competing interests

The authors have no relevant financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1932 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Wang, F., Lin, H. et al. High-sensitive MwCNTs/CMC/PDMS flexible capacitive pressure sensor prepared through ice template method and its wearable applications. J Mater Sci: Mater Electron 34, 1288 (2023). https://doi.org/10.1007/s10854-023-10638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10638-w

Navigation