Skip to main content

Research Progress of Capacitive Flexible Pressure Sensors

  • Conference paper
  • First Online:
Advanced Graphic Communication, Printing and Packaging Technology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 600))

  • 1657 Accesses

Abstract

The flexible pressure sensors which cover the human body can generate electric signal under pressure. Compared to other types of pressure sensors, the capacitive flexible pressure sensors have the advantages of low energy consumption, fast response time and low detection limit. In order to obtain high performance capacitive flexible pressure sensors, efforts have been done on the structures and materials of sensors. This chapter reviews the methods to improve the sensor performance, including the preparation of microstructures and composite dielectric layers. Moreover, the research progress of capacitive flexible pressure sensors in the fields of intelligent medical and robotics is summarized. Finally, the prospects and challenges are discussed for capacitive flexible pressure sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nam SH, Jeon PJ, Min SW, Lee YT, Park EY, Im S (2014) Highly sensitive non-classical strain gauge using organic Heptazole thin-film transistor circuit on a flexible substrate. Adv Func Mater 24(28):4413–4419

    Article  Google Scholar 

  2. Li J, Bao R, Tao J, Peng Y, Pan C (2018) Recent progress in flexible pressure sensor arrays: from design to applications. J Mater Chem C 6(44):11878–11892

    Article  Google Scholar 

  3. Li S, Peele BN, Larson CM, Zhao H, Shepherd RF (2016) A stretchable multicolor display and touch interface using photo patterning and transfer printing. Adv Mater 28(44):9770–9775

    Article  Google Scholar 

  4. Jin X, Götz M, Wille S, Mishra YK, Adelung R, Zollfrank C (2013) A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv Mater 25(9):1342–1347

    Article  Google Scholar 

  5. Zhong LW, Chen J, Long L (2015) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8(8):2250–2282

    Article  Google Scholar 

  6. Tee CK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A et al (2015) A skin-inspired organic digital mechanoreceptor. Science 350(6258):313–316

    Article  Google Scholar 

  7. Rodgers MM, Pai Vinay M, Conroy Richard S (2015) Recent advances in wearable sensors for health monitoring. Sens J IEEE 15(6):3119–3126

    Article  Google Scholar 

  8. Qian X, Su M, Li F, Song Y (2016) Research progress of flexible wearable electronic sensors. Acta Chim Sinica 74(7):565–575

    Article  Google Scholar 

  9. Cho SH, Lee SW, Yu S, Kim H, Chang S, Kang D et al (2017) Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl Mater Interfaces 9(11):10128–10135

    Article  Google Scholar 

  10. Cai L, Song L, Luan P, Zhang Q, Zhang N, Gao Q et al (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3(6157):3048

    Article  Google Scholar 

  11. Mannsfeld SCB, Tee CK, Stoltenberg RM, Chen HH, Barman S, Muir BVO et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9(10):859–864

    Article  Google Scholar 

  12. Tee CK, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z (2014) Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Func Mater 24(34):5427–5434

    Article  Google Scholar 

  13. Pignanelli J, Schlingman K, Carmichael TB, Rondeau-Gagné S, Ahamed MJ (2018) A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens Actuators, A 285:427–436

    Article  Google Scholar 

  14. Nie B, Li X, Shao J, Li X, Tian H, Wang D et al (2017) Flexible and transparent strain sensors with embedded multiwalled-carbon-nanotubes meshes. ACS Appl Mater Interfaces 9(46):40681–40689

    Article  Google Scholar 

  15. Li T, Luo H, Qin L, Wang X, Xiong Z, Ding H et al (2016) Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12(36):5042–5048

    Article  Google Scholar 

  16. Yoon SG, Park BJ, Chang ST (2017) Highly sensitive piezocapacitive sensor for detecting static and dynamic pressure using ion-gel thin films and conductive elastomeric composites. ACS Appl Mater Interfaces 9(41):36206–36219

    Article  Google Scholar 

  17. Ma L, Shuai X, Hu Y, Liang X, Zhu P, Sun R et al (2018) A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J Mater Chem C 6(48):13232–13240

    Article  Google Scholar 

  18. Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z (2019) Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interfaces 11(7):6685–6704

    Article  Google Scholar 

  19. Lee BY, Kim J, Kim H, Kim C, Lee SD (2016) Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores. Sens Actuators, A 240:103–109

    Article  Google Scholar 

  20. Ding H, Wen Z, Qin E, Yang Y, Zhang W, Yan B et al (2019) Influence of the pore size on the sensitivity of flexible and wearable pressure sensors based on porous Ecoflex dielectric layers. Mater Res Express 6(6):066304

    Article  Google Scholar 

  21. Chen S, Zhuo B, Guo X (2016) Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Appl Mater Interfaces 8(31):20364–20370

    Article  Google Scholar 

  22. Fan Y, Liao C, Liao G, Tan R, Xie L (2017) Capacitive pressure-sensitive composites using nickel–silicone rubber: experiments and modeling. Smart Mater Struct 26(7):075003

    Article  Google Scholar 

  23. Fan Y, Liao C, Xie L, Chen X (2018) Piezo-capacitive behavior of a magnetically structured particle-based conductive polymer with high sensitivity and a wide working range. J Mater Chem C 6(20):5401–5411

    Article  Google Scholar 

  24. Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H et al (2015) A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7(7):2926–2932

    Article  Google Scholar 

  25. Shi R, Lou Z, Chen S, Shen G (2018) Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci China Mater 61(12):1587–1595

    Article  Google Scholar 

  26. Li Z (2017) Research on printing flexible pressure sensor based on composite dielectric material. Master’s thesis, Beijing Institute of Graphic Communication

    Google Scholar 

  27. Chen YS, Hsieh GW, Chen SP, Tseng PY, Wang CW (2014) Zinc oxide nanowire-poly (methyl methacrylate) dielectric layers for polymer capacitive pressure sensors. ACS Appl Mater Interfaces 7(1):45–50

    Article  Google Scholar 

  28. Choi D, Jang S, Kim JS, Kim HJ, Kim DH, Kwon JY (2019) A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Advan Mater Technol 4(3):1800284

    Article  Google Scholar 

  29. Qiu Z, Wan Y, Zhou W, Yang J, Yang J, Huang J et al (2018) Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv Func Mater 28(37):1802343

    Article  Google Scholar 

  30. Wang X, Liu Z, Zhang T (2017) Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25):1602790

    Article  Google Scholar 

  31. Pruvost M, Smit WJ, Monteux C, Poulin P, Colin A (2019) Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. npj Flexible Electronics 3(1):7

    Google Scholar 

  32. Liu F, Han F, Ling L, Li J, Zhao S, Zhao T et al (2018) An omni‐healable and highly sensitive capacitive pressure sensor with microarray structure. Chem–A European J 24(63):16823–16832

    Google Scholar 

  33. Wen Z, Yang J, Ding H, Zhang W, Wu D, Xu J et al (2018) Ultra-highly sensitive, low hysteretic and flexible pressure sensor based on porous MWCNTs/ecoflex elastomer composites. J Mater Sci Mater Electron 29(24):20978–20983

    Article  Google Scholar 

  34. Yoon SG, Chang ST (2017) Microfluidic capacitive sensors with ionic liquid electrodes and CNT/PDMS nanocomposites for simultaneous sensing of pressure and temperature. J Mater Chem C 5(8):1910–1919

    Google Scholar 

  35. Almassri AM, Wan Hasan WZ, Ahmad SA, Ishak AJ, Ghazali AM, Talib DN, Wada C (2015) Pressure sensor: state of the art, design, and application for robotic hand. J Sens 2015

    Google Scholar 

  36. Hua Q, Sun J, Liu H, Bao R, Wang ZL (2018) Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 9(1):244

    Article  Google Scholar 

  37. Maiolino P, Galantini F, Mastrogiovanni F, Gallone G, Cannata G, Carpi F (2015) Soft dielectrics for capacitive sensing in robot skins: performance of different elastomer types. Sens Actuators, A 226:37–47

    Article  Google Scholar 

  38. Ji Z, Zhu H, Liu H, Chen T, Sun L (2016) A flexible capacitive tactile sensor for robot skin. In: 2016 international conference on advanced robotics and mechatronics (ICARM). IEEE, pp 207–212

    Google Scholar 

  39. Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L et al (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277):1071–1074

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the fund from of Education project (KM201810015004), the Beijing Municipal Commission of Education 2011 Collaborative Innovation Centre, the 2018 Beijing University Talents Cross Training Plan (Shipei Plan), the 2017 Beijing Municipal Commission of Education Outstanding Young Scholars (CIT&TCD201704051), the Research and Development Program of BIGC (Ea201803) and the Beijing Municipal Commission of the Education Foundation (PXM2017_014223_000036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Ding, Y., Meng, X., Wu, D., Mo, L., Li, L. (2020). Research Progress of Capacitive Flexible Pressure Sensors. In: Zhao, P., Ye, Z., Xu, M., Yang, L. (eds) Advanced Graphic Communication, Printing and Packaging Technology. Lecture Notes in Electrical Engineering, vol 600. Springer, Singapore. https://doi.org/10.1007/978-981-15-1864-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1864-5_73

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1863-8

  • Online ISBN: 978-981-15-1864-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics