Skip to main content
Log in

Flatband voltage in MOS structures for spatial fixed oxide charge distributions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article reports and models the impact of fixed oxide charges distributed spatially in the gate oxide of a metal–oxide–semiconductor (MOS) structure on its flatband voltage. In general analyses, the location of fixed oxide charges is effectively considered at the oxide–semiconductor interface which results in a simpler expression of the flatband voltage. However, for applications where fixed oxide charge distribution is a deciding component, the effect of the measured fixed oxide charge distribution inside the gate oxide needs to be reflected in the expression. The one-dimensional model in this article is used to design and deploy a graphical user interface which enables one to compute the flatband voltage of a MOS structure for any distribution of fixed oxide charges in the gate oxide, inclusive of known functions (Gaussian, exponential, or others), and discrete coordinate-based distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E.H. Nicollian, J.R. Brews, MOS (metal oxide semiconductor) physics and technology (Wiley-Interscience, Hoboken, 2003)

    Google Scholar 

  2. Y. Taur, T.H. Ning, Fundamentals of modern VLSI devices (Cambridge Univ. Press, Cambridge, 2013)

    Google Scholar 

  3. R.S. Muller, T.I. Kmins, Device electron for integrated circuits (John Wiley, New York, 2003)

    Google Scholar 

  4. S.M. Sze, Y. Li, K.K. Ng, Physics of semiconductor devices (John Wiley & Sons, 2021)

    Google Scholar 

  5. R.F. Pierret, Semiconductor device fundamentals (Pearson/Education, New Delhi, 2008)

    Google Scholar 

  6. Sun, J., Zhang, Y., Lu, H., Lyu, Z., Zhu, Y. and Pan, Y. (2022). Comparative study on degradation of the TFET and MOSFET [online] IEEE Xplore. doi:https://doi.org/10.1109/ICSICT55466.2022.9963149.

  7. M.N. Reddy, D.K. Panda, A comprehensive review on FinFET in terms of its device structure and performance matrices. Silicon (2022). https://doi.org/10.1007/s12633-022-01929-8

    Article  Google Scholar 

  8. Settino, F., Strangio, S., Lanuzza, M., Crupi, F., Pierpaolo Palestri and Esseni, D. (2017). Simulations and comparisons of basic analog and digital circuit blocks employing Tunnel FETs and conventional FinFETs. doi:https://doi.org/10.1109/e3s.2017.8246154.

  9. D. Deb, R. Goswami, R.K. Baruah, K. Kandpal, R. Saha, Parametric investigation and trap sensitivity of n-p-n double gate TFETs. Comput. Electr. Eng. 100, 107930 (2022). https://doi.org/10.1016/j.compeleceng.2022.107930

    Article  Google Scholar 

  10. Pandy, D., Sharma, R., Sharma, S. (2022). Simulation comparison of capacitance voltage characteristics in nickel oxide and silicon dioxide-based MOS capacitor. [online] IEEE Xplore. doi:https://doi.org/10.1109/ICCR56254.2022.9995931.

  11. M.T. Soo, A. Matsuda, A. Fauzi, Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications. Sens. Actuators B-Chem. 151(1), 39–55 (2010). https://doi.org/10.1016/j.snb.2010.09.059

    Article  CAS  Google Scholar 

  12. A. Enache, F. Draghici, F. Mitu, R. Pascu, G. Pristavu, M. Pantazica, G. Brezeanu, PLL-based readout circuit for SiC-MOS capacitor hydrogen sensors in industrial environments. Sensors 22(4), 1462 (2022). https://doi.org/10.3390/s22041462

    Article  CAS  Google Scholar 

  13. S.K. Banerjee, B.G. Streetman, Solid state electronic devices (Prentice Hall, Boston, 2016)

    Google Scholar 

  14. H. Kato, S. Mori, H. Kuwano, Effect of flat-band voltage shift and nonvolatile memory in platinum-diffused metal-oxide-semiconductor devices. J. Appl. Phys. 56, 1160–1164 (1984). https://doi.org/10.1063/1.334043

    Article  CAS  Google Scholar 

  15. R. Winter, J. Ahn, P.C. McIntyre, M. Eizenberg, New method for determining flat-band voltage in high mobility semiconductors. J. Vac. Sci. Technol. 31(3), 030604–030604 (2013). https://doi.org/10.1116/1.4802478

    Article  CAS  Google Scholar 

  16. D. Jeon, S.K. Park, M. Mouis, S. Barraud, G.N. Kim, G. Ghibaudo, A new method for the extraction of flat-band voltage and doping concentration in tri-gate junctionless transistors. Solid-State Electron. 81, 113–118 (2013). https://doi.org/10.1016/j.sse.2012.11.011

    Article  CAS  Google Scholar 

  17. N.S. Saks, M.G. Ancona, J.A. Modolo, Radiation effects in MOS capacitors with very thin oxides at 80ºK. IEEE Trans. Nuc. Sci. 31, 1249–1255 (1984). https://doi.org/10.1109/TNS.1984.4333491

    Article  Google Scholar 

  18. E. Yilmaz, İ Doğan, R. Turan, Use of Al2O3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate. Nucl. Instr. Methods Phys. Res. B 266(22), 4896–4898 (2008). https://doi.org/10.1016/j.nimb.2008.07.028

    Article  CAS  Google Scholar 

  19. S. Kaya, E. Yilmaz, A. Kahraman, H. Karacali, Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors. Nucl. Instr. Methods Phys. Res. B 358, 188–193 (2015). https://doi.org/10.1016/j.nimb.2015.06.037

    Article  CAS  Google Scholar 

  20. S. Ren, M.A. Bhuiyan, J. Zhang, X. Lou, M. Si, X.Z. Gong, R. Jiang, K. Ni, X. Wan, E.X. Zhang, R.G. Gordon, R.A. Reed, D.M. Fleetwood, P.D. Ye, T.-P. Ma, Total ionizing dose (TID) effects in GaAs MOSFETs with La-based epitaxial gate dielectrics. IEEE Trans. Nucl. Sci. (2017). https://doi.org/10.1109/tns.2016.2620993

    Article  Google Scholar 

  21. www.wolframalpha.com. (n.d.). Integral calculator: integrate with Wolfram|Alpha. [online] https://www.wolframalpha.com/calculators/integral-calculator/.

  22. D.-S. Lee, C. Chan, Oxide charge accumulation in metal oxide semiconductor devices during irradiation. J. Appl. Phys. 69(10), 7134–7141 (1991). https://doi.org/10.1063/1.347603

    Article  CAS  Google Scholar 

  23. Pinto, M.R., Smith, K., Alam, M., Clark, S., Wang, X., Klimeck, G., Vasileska, D., (2006). Padre. 2006. doi:https://doi.org/10.4231/D30C4SK7Z.

  24. Emmanuel Jose Ochoa, Stella Quinones (2014) Intro to MOS-capacitor tool. https://nanohub.org/resources/mosctool. doi:https://doi.org/10.4231/D3BG2HB3Z.

  25. Sevillano-Bendezú, M.Á., Ángel, M. (2019). Comparison and evaluation of measured and simulated high-frequency capacitance-voltage curves of MOS structures for different interface passivation parameters. www.semanticscholar.org [Accessed 30 Apr. 2023].

  26. B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron Devices 27(3), 606–608 (1980). https://doi.org/10.1109/T-ED.1980.19908

    Article  Google Scholar 

  27. B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow, Characteristics of the surface-state charge (Qss) of thermally oxidized silicon. J. Electrochem. Soc. 114(3), 266 (1967). https://doi.org/10.1149/1.2426565

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge partial support by DST-FIST II, vide sanction no. SR/FST/ET-II/2018/241 for understanding TCAD simulations for MOS capacitors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. PH, MR, and AH contributed equally to the work, and contributed to the first draft. PH and MR verified the mathematical considerations of integration, while AH designed the graphical user interface and application. DD, RG, and AH worked on the validation of the numerical simulations and experimental trends. PSD and HC contributed to the design of the methodology. RG supervised the entire work.

Corresponding author

Correspondence to Rupam Goswami.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The graphical user interface can be downloaded as an application at: https://github.com/RupamG21/TSDL_FlatB.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, P., Ray, M., Hazarika, A. et al. Flatband voltage in MOS structures for spatial fixed oxide charge distributions. J Mater Sci: Mater Electron 34, 1242 (2023). https://doi.org/10.1007/s10854-023-10626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10626-0

Navigation