Skip to main content

Advertisement

Log in

A PMMA-assisted transfer method of waste cooking palm oil based multi-layered graphene from a nickel substrate onto a glass substrate for the development of a humidity sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, graphene was synthesized from an abundance of waste cooking palm oil (WCPO) and utilized as a humidity sensing film. Using WCPO as a precursor and the double thermal chemical vapour deposition method, graphene was successfully deposited on a nickel substrate. The growth of graphene film, resulting in the highest of I2D/IG (0.41) and lowest of ID/IG (0.02) since, the carbon atoms segregate and form multilayers graphene with high crystalline and low defective structure. Subsequently, multilayer of graphene on nickel was transferred onto glass substrate by poly (methyl methacrylate) polymer for humidity sensor application. The response-recovery time, sensitivity, and repeatability of humidity sensor were determined using humidity chamber under exposure of 40 to 90% RH. The response times for the adsorption and desorption processes are 597 and 503 s, respectively. This is attributed by the high sheet resistant of multilayer graphene (MLG). Meanwhile, the sensitivity at 40% to 90% RH, is 365%. MLG-based humidity sensor remains constant and similar at fifth cycles, indicating that the sensor has an excellent repeatability and has potential as a sensing material based on low cost and renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. S.S. Shams, R. Zhang, J. Zhu, Mater. Sci. Pol. 33, 566 (2015). https://doi.org/10.1515/msp-2015-0079

    Article  CAS  Google Scholar 

  2. M.J. Firdhouse, P. Lalitha, Carbon Sci. Technol. 5, 253 (2013)

    Google Scholar 

  3. W.R. Chung, Y. Zhao, M. Oye, C. Nguyen, in 11th IEEE International Conference on Nanotechnology Portland Marriott (IEEE, Portland, 2011), pp. 1378–1383. https://doi.org/10.1109/NANO.2011.6144423

  4. T. Mahmoudi, Y. Wang, Y. Hahn, Nano Energy 47, 51 (2018). https://doi.org/10.1016/j.nanoen.2018.02.047

    Article  CAS  Google Scholar 

  5. M.P. Ghatule, U.A. Devare, Int. J. Innov. Res. Adv. Eng. (IJIRAE) 2, 184 (2015)

    Google Scholar 

  6. J.K. Wassei, M. Mecklenburg, J.A. Torres, J.D. Fowler, B.C. Regan, R.B. Kaner, B.H. Weiller, Nano Micro Small 8, 1415 (2012). https://doi.org/10.1002/smll.201102276

    Article  CAS  Google Scholar 

  7. R. Kumar, R.K. Singh, D. Pratap Singh, Renew. Sustain. Energy Rev. 58, 976 (2016). https://doi.org/10.1016/j.rser.2015.12.120

    Article  CAS  Google Scholar 

  8. M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, H.W. Kroto, Chem. Phys. Lett. 338, 101 (2001)

    Article  CAS  Google Scholar 

  9. S. Sharma, P. Ranjan, S. Das, S. Gupta, R. Bhati, A. Majumdar, Int. J. Renew. Energy Res. 2, 274 (2012). https://doi.org/10.20508/ijrer.15899

    Article  Google Scholar 

  10. A.A. Refaat, Int. J. Environ. Sci. Technol. 7, 183 (2010)

    Article  CAS  Google Scholar 

  11. T. Liang, Y. Kong, H. Chen, M. Xu, Chin. J. Chem. 34, 32 (2016). https://doi.org/10.1002/cjoc.201500429

    Article  CAS  Google Scholar 

  12. D. Jalani, S. Fadzli, A. Rahman, A.M. Hashim, Mater. Lett. 185, 168 (2016). https://doi.org/10.1016/j.matlet.2016.06.112

    Article  CAS  Google Scholar 

  13. K. Al-Shurman, H. Naseem, in COMSOL Conference in Boston (Comsol Multiphysics, Boston, 2014), pp. 1–7

  14. C. Seah, S. Chai, A.R. Mohamed, Carbon 70, 1 (2014). https://doi.org/10.1016/j.carbon.2013.12.073

    Article  CAS  Google Scholar 

  15. A.R. Shaharin, M. Rusop, A.M. Hashim, Sains Malaysiana 43, 1205 (2012)

    Google Scholar 

  16. P. Taylor, W. Choi, I. Lahiri, R. Seelaboyina, Solid State Mater. Sci. 35, 52 (2010). https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  17. L. Xuesong, Z. Yanwu, C. Weiwei, B. Mark, H. Boyang, C. David, D.P. Richar, C. Luigi, S.R. Rodney, Nano Lett. 9, 4359 (2009)

    Article  Google Scholar 

  18. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S. Pei, Appl. Phys. Lett. 93, 113103–07 (2011). https://doi.org/10.1063/1.2982585

    Article  CAS  Google Scholar 

  19. G. Mittal, V. Dhand, K. Yop, S. Park, W. Ro, J. Ind. Eng. Chem. 21, 11 (2014)

    Article  Google Scholar 

  20. L. Juntao, L. Wei, Z. Xiaobing, W. Baoping, B. Long, Solid State Electron. 48, 2147 (2004). https://doi.org/10.1016/j.sse.2004.06.011

    Article  CAS  Google Scholar 

  21. Z. Yi, Z. Luyao, Z. Chongwu, Am. Chem. Soc. 46, 2329 (2013)

    Google Scholar 

  22. H.A. Zakaryan, V.M. Aroutionian, Sci. Rep. 200, 9 (2014). https://doi.org/10.5162/sensor2015/P10.1

    Article  Google Scholar 

  23. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007). https://doi.org/10.1038/nmat1967

    Article  CAS  Google Scholar 

  24. C.-H. Kim, S.-W. Yoo, D.-W. Nam, S. Seo, J.H. Lee, Electron Device Lett. IEEE 33, 1084 (2012). https://doi.org/10.1109/LED.2012.2193867

    Article  CAS  Google Scholar 

  25. P. Su, K. Cheng, Sensors Actuators B Chem. J. 137, 555 (2009). https://doi.org/10.1016/j.snb.2009.01.053

    Article  CAS  Google Scholar 

  26. M. Qasim and M. Saleem, Preparation of the PMMA Resist Solution (Physlab, 2016)

  27. Ishigami, Nanomaterial Research and More 36 (2018)

  28. M. Chen, R.C. Haddon, R. Yan, E. Bekyarova, Mater. Horiz. 4, 1054 (2017). https://doi.org/10.1039/C7MH00485K

    Article  CAS  Google Scholar 

  29. P.S. Chandrasekhar, V.K. Komarala, R. Soc. Chem. 7, 28610 (2017). https://doi.org/10.1039/c7ra02036h

    Article  CAS  Google Scholar 

  30. Y. Ma, H. Jang, S.J. Kim, C. Pang, H. Chae, Nanoscale Res. Lett. 10, 1 (2015). https://doi.org/10.1186/s11671-015-1019-8

    Article  CAS  Google Scholar 

  31. W. Liu, X. Wang, J. Song, Q. Zhang, C. Chang, Mater. Sci. Semicond. Process. 27, 273 (2014). https://doi.org/10.1016/j.mssp.2014.06.051

    Article  CAS  Google Scholar 

  32. M.S. Eluyemi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana, O. Fasakin, O.O. Akinwunmi, O.O. Ilori, A.T. Famojuro, S.A. Ayinde, E.O.B. Ajayi, Sci. Res. Publ. 5, 143 (2016)

    CAS  Google Scholar 

  33. L.G.P. Martins, Y. Song, T. Zeng, M.S. Dresselhaus, J. Kong, P.T. Araujo, Proc. Natl Acad. Sci. U.S.A. 110, 17762 (2013). https://doi.org/10.1073/pnas.1306508110

    Article  Google Scholar 

  34. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, W.E.T. Al, ACSNano 5, 9927 (2011)

    CAS  Google Scholar 

  35. M.F. Achoi, M.N. Asiah, M. Rusop, S. Abdullah, Trans. Mater. Res. Soc. Jpn. 36, 273 (2011)

    Article  Google Scholar 

  36. S. Cha, M. Cha, S. Lee, J.H. Kang, C. Kim, Sci. Rep. 5, 1 (2015). https://doi.org/10.1038/srep17877

    Article  CAS  Google Scholar 

  37. J. Kang, S. Hwang, J.H. Kim, M.H. Kim, J. Ryu, S.J. Seo, ACSNano 6, 5360 (2012). https://doi.org/10.1021/nn301207d

    Article  CAS  Google Scholar 

  38. R. Sharma, N. Chadha, P. Saini, Indian J. Pure Appl. Phys. 55, 625 (2017)

    Google Scholar 

  39. T.H. Seo, A.H. Park, S. Park, Y.H. Kim, G.H. Lee, M.J. Kim, M.S. Jeong, Y.H. Lee, Y. Hahn, E. Suh, Sci. Rep. 5, 7747 (2015). https://doi.org/10.1038/srep07747

    Article  CAS  Google Scholar 

  40. J. Prekodravac, Z. Markovi, S. Jovanovi, V. Pavlovi, Synth. Met. 209, 461 (2015). https://doi.org/10.1016/j.synthmet.2015.08.015

    Article  CAS  Google Scholar 

  41. W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, Nanotechnology 23, 035603 (2012). https://doi.org/10.1088/0957-4484/23/3/035603

    Article  CAS  Google Scholar 

  42. B. Vigolo, J. Gleize, F. Le Normand, Carbon 96, 268 (2016). https://doi.org/10.1016/j.carbon.2015.09.073

    Article  CAS  Google Scholar 

  43. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, Carbon 49, 4204 (2011). https://doi.org/10.1016/j.carbon.2011.05.054

    Article  CAS  Google Scholar 

  44. H. Jin, J. Meyer, S. Roth, Carbon 48, 1088 (2010). https://doi.org/10.1016/j.carbon.2009.11.030

    Article  CAS  Google Scholar 

  45. A.S. Ismail, M.H. Mamat, M. Rusop, in Nanostructured Materials—Fabrication to Applications, edited by M.S. Sheera (InTechOpen, London, 2017), pp. 168–184. https://doi.org/10.5772/67661

  46. H. Murata, Y. Nakajima, N. Saitoh, N. Yoshizawa, Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-40547-0

    Article  CAS  Google Scholar 

  47. M.R.O. Masta, B.P. Russell, V.S. Deshpande, Extreme Mech. Lett. 11, 49 (2017). https://doi.org/10.1016/j.eml.2016.12.001

    Article  Google Scholar 

  48. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors (2014). https://doi.org/10.3390/s140507881

    Article  Google Scholar 

  49. T.H. Seo, A.H. Park, S. Park, S. Chandramohan, G.H. Lee, M.J. Kim, C. Hong, E. Suh, Opt. Mater. Expr. 5, 314 (2015). https://doi.org/10.1364/OME.5.000314

    Article  CAS  Google Scholar 

  50. V.I. Popov, D.V. Nikolaev, V.B. Timofeev, S.A. Smagulova, I.V. Antonova, Nanotechnology 28, 1 (2017)

    Google Scholar 

  51. W. De Lin, H.M. Chang, R.J. Wu, Sensors Actuators B Chem. 181, 326 (2013). https://doi.org/10.1016/j.snb.2013.02.017

    Article  CAS  Google Scholar 

  52. G.C. Ri, J.S. Kim, C.J. Yu, Phys. Rev. Appl. 10, 1 (2018). https://doi.org/10.1103/PhysRevApplied.10.034018

    Article  Google Scholar 

  53. Z. BenAziza, K. Zhang, D. Baillargeat, Q. Zhang, Appl. Phys. Lett. 107, 134102 (2015). https://doi.org/10.1063/1.4932124

    Article  CAS  Google Scholar 

  54. W. Liu, H. Qu, J. Hu, W. Pang, H. Zhang, X. Duan, Micromachines 8, 1 (2017). https://doi.org/10.3390/mi8040116

    Article  Google Scholar 

  55. A.S. Ismail, M.H. Mamat, M.M. Yusoff, M.F. Malek, A.S. Zoolfakar, R.A. Rani, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Mater. Lett. 210, 258 (2017). https://doi.org/10.1016/j.matlet.2017.09.040

    Article  CAS  Google Scholar 

  56. Z.S. Hosseini, A. Irajizad, M.A. Ghiass, S. Fardindoost, S. Hatamie, J. Mater. Chem. C 5, 8966 (2017). https://doi.org/10.1039/C7TC01740E

    Article  Google Scholar 

  57. C. Chen, X. Wang, M. Li, Sensors Actuators B Chem. 255, 1569 (2018). https://doi.org/10.1016/j.snb.2017.08.168

    Article  CAS  Google Scholar 

  58. A. Ghosh, D.J. Late, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, J. Exp. Nanosci. 4, 313 (2009). https://doi.org/10.1080/17458080903115379

    Article  CAS  Google Scholar 

  59. M.C. Chen, C.L. Hsu, T.J. Hsueh, IEEE Electron Device Lett. 35, 590 (2014). https://doi.org/10.1109/LED.2014.2310741

    Article  CAS  Google Scholar 

  60. G. Naik, S. Krishnaswamy, Sci. Res. Publ. 5, 1 (2016)

    CAS  Google Scholar 

  61. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005). https://doi.org/10.1038/nature04235

    Article  CAS  Google Scholar 

  62. F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Small 6, 2535 (2010). https://doi.org/10.1002/smll.201001384

    Article  CAS  Google Scholar 

  63. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, ACS Nano 7, 11166 (2013). https://doi.org/10.1021/nn404889b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NANO-SciTech Centre, Integrated Sensors Research Lab, School of Electrical Engineering, College of Engineering, Institute of Science and Institute of Research Management & Innovation (IRMI), Universiti Teknologi MARA (UiTM), Malaysia for the technical and financial support, respectively.

Funding

This work was supported by Grant No. PRGS/1/2022/TK04/UITM/02/3 under Ministry of Higher Education (MOHE).

Author information

Authors and Affiliations

Authors

Contributions

RM: performed the experiments and analysed the data, wrote the manuscript. AA, MR, SA: help analysed the data, contributed to the final version of the manuscript, supervised the project, and in charge of overall direction and planning. WFHA and AH: helped supervise the project. ZK: contributed to sample preparation. RAR: contributed to the design and implementation of the experiment and the final version of the manuscript.

Corresponding authors

Correspondence to N. A. Asli or M. Rusop.

Ethics declarations

Competing interests

The authors have not disclosed any funding.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robaiah, M., Asli, N.A., Abdul Rani, R. et al. A PMMA-assisted transfer method of waste cooking palm oil based multi-layered graphene from a nickel substrate onto a glass substrate for the development of a humidity sensor. J Mater Sci: Mater Electron 34, 1287 (2023). https://doi.org/10.1007/s10854-023-10591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10591-8

Navigation