Skip to main content
Log in

Thermochromic and photocatalytic properties of thermally evaporated vanadium oxide–molybdenum oxide mixed oxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vanadium Oxide–Molybdenum Oxide (VO–MO) mixed oxide thin films of 500 nm thickness with different compositions of VO75% MO25%, VO50% MO50%, and VO25% MO75% are coated on quartz substrate by thermal evaporation technique. The prepared composite thin films showed good thermochromic properties while heating and remarkable reversible properties while bleaching. The transition temperature of the composite thin film (500 nm thickness) with a composition of VO50% MO50% was 29 °C and that of VO75% MO25% was 64 °C and that of VO25% MO75% was − 13 °C. It is clear that the VO50% MO50% composite thin film showed a better transition temperature that is near room temperature. All the three composite thin films showed metamaterial properties in a small range of temperatures and also the composite thin films exhibited good photocatalytic performance on methylene blue (MB) dye degradation under direct sunlight irradiation. However the composite thin film VO50% MO50% (when compared to VO75% MO25% and VO25% MO75% thin films) showed better photocatalytic performance of about 46% of MB dye degradation when exposed to sunlight for 120 min. Hence the obtained composite thin film (VO50% MO50% ) with both thermochromic and photocatalytic properties can play a crucial role to develop technological advancement in eco-friendly building applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to, them containing information that could compromise research participant privacy/consent but are available from the corresponding author [AAK] on reasonable request.

References

  1. Y. Li, S. Ji, Y. Gao, H. Luo, M. Kanehira, Sci. Rep. (2013). https://doi.org/10.1038/srep01370

    Article  Google Scholar 

  2. S.J. Liu, H.W. Fang, Y.T. Su, J.H. Hsieh, Jpn. J. Appl. Phys. (2014). https://doi.org/10.7567/JJAP.53.063201

    Article  Google Scholar 

  3. Z. Huang, C. Chen, C. Lv, S. Chen, J. Alloys Compd. (2013). https://doi.org/10.1016/j.jallcom.2013.02.108

    Article  Google Scholar 

  4. G.N. Kryukova, G.A. Zenkovets, N. Pfänder, D.S. Su, R. Schlögl, Mater. Sci. Eng. A (2003). https://doi.org/10.1016/S0921-5093(02)00372-6

    Article  Google Scholar 

  5. K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, A. Sawa, Jpn. J. Appl. Phys. (2014). https://doi.org/10.7567/JJAP.53.071102

    Article  Google Scholar 

  6. X. Shi Qi, M.H. Ping, D.A. Shi, J.Z. Hong, Chin. Phys. Lett. (2003)

  7. D. Li, M. Li, J. Pan, Y. Luo, Wu. Hao, Y. Zhang, G. Li, ACS Appl. Mater. Interface (2014). https://doi.org/10.1021/am500135d

    Article  Google Scholar 

  8. M. Nazemiyan, Y.S. Jalili, AIP Adv. (2013). https://doi.org/10.1063/1.4829663

    Article  Google Scholar 

  9. S. Xu, H. Ma, S. Dai, Z. Jiang, J. Mater. Sci. 39, 489–493 (2004). https://doi.org/10.1023/B:JMSC.0000011503.22893.f4

    Article  CAS  Google Scholar 

  10. T.J. Hanlon, J.A. Coath, M.A. Richardson, Thin Solid Films (2003). https://doi.org/10.1016/S0040-6090(03)00602-3

    Article  Google Scholar 

  11. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, Yi. Long, Joule (2018). https://doi.org/10.1016/j.joule.2018.06.018

    Article  Google Scholar 

  12. J.B. Goodenough, J. Solid State Chem. (1971). https://doi.org/10.1016/0022-4596(71)90091-0

    Article  Google Scholar 

  13. M. Li, Z. Yang, Y. Ren, J. Ruan, J. Qiu, Z. Song, Inorg. Chem. (2019). https://doi.org/10.1021/acs.inorgchem.9b00526

    Article  Google Scholar 

  14. A. Soultati, M. Vasilopoulou, G. Papadimitropoulos, A. Douvas, I. Kostis, I. Karystinos, S. Kennou, G. Skoulatakis, D. Davazoglou, Thin Solid Films (2016). https://doi.org/10.1016/j.tsf.2016.07.046

    Article  Google Scholar 

  15. A. Zylbersztejn, N.F. Mott, Phys. Rev. B (1975). https://doi.org/10.1103/PhysRevB.11.4383

    Article  Google Scholar 

  16. C. Korber, J. Suffner, A. Klein, J. Phys. D (2010). https://doi.org/10.1088/0022-3727/43/5/055301

    Article  Google Scholar 

  17. P. Singh, D. Kaur, J. Appl. Phys. (2008). https://doi.org/10.1063/1.2844438

    Article  Google Scholar 

  18. R.T. Rajendra Kumar, B. Karunagaran, V. Senthil Kumar, Y.L. Jeyachandran, D. Mangalaraj, S.K. Narayandass, Mater. Sci. Semicon. Proc. (2003). https://doi.org/10.1016/j.mssp.2003.08.017

    Article  Google Scholar 

  19. M. Pandian, P. Matheswaran, B. Gokul, R. Sathyamoorthy, K. Asokan, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.01.027

    Article  Google Scholar 

  20. A. Begum, A. Hussain, A. Rahman, Beilstein. J Nanotechnol. (2012). https://doi.org/10.3762/bjnano.3.50

    Article  Google Scholar 

  21. T. Cesca, C. Scian, E. Petronijevic, G. Leahu, R.L. Voti, G. Cesarini, R. Macaluso, M. Mosca, C. Sibilia, G. Mattei, Nanoscale (2020). https://doi.org/10.1039/C9NR09024J

    Article  Google Scholar 

  22. Z. Tan, D. Qian, W. Zhang, L. Li, Y. Ding, Q. Xu, F. Wang, Y. Li, J. Mater. Chem. A. (2013). https://doi.org/10.1039/C2TA00325B

    Article  Google Scholar 

  23. J.G. Choi, L.T. Thompson, Appl. Surf. Sci. (1996). https://doi.org/10.1016/0169-4332(95)00317-7

    Article  Google Scholar 

  24. J. Mendialdua, R. Casanova, Y. Barbaux, J. Electron. Spectrosc. Relat. Phenom. (1995). https://doi.org/10.1016/0368-2048(94)02291-7

    Article  Google Scholar 

  25. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. (2010). https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  Google Scholar 

  26. D. Li, M. Li, J. Pan, Y. Luo, H. Wu, Y. Zhang, G. Li, ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am500135d

    Article  Google Scholar 

  27. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y.Z.S. Wang, Y. Gao, Yi. Long, Joule (2018). https://doi.org/10.1016/j.joule.2018.06.018

    Article  Google Scholar 

  28. D. Mukherjee, A. Dey, A.C.M. Esther, N. Sridhara, D. Raghavendra Kumar, A. Rajendra, A.K. Sharma, A.K. Mukhopadhyay, RSC Adv. (2018). https://doi.org/10.1039/C8RA04957B

    Article  Google Scholar 

  29. X. Lv, Y. Cao, L. Yan, Y. Li, L. Song, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2016.10.044

    Article  Google Scholar 

  30. P. Jin, S. Tanemura, Thin Solid Films (1996). https://doi.org/10.1016/0040-6090(96)08641-5

    Article  Google Scholar 

  31. M. Kim, D. Kim, S. Hwang, J.-H. Park, S.-H. Nam, J.-H. Boo, J. Lee, Nanosci. Nanotechnol. Lett. (2015). https://doi.org/10.1166/nnl.2015.2073

    Article  Google Scholar 

  32. S.J. Armaković, M. Grujić-Brojčin, M. Šćepanović, S. Armaković, A. Golubović, B. Babić, B.F. Abramović, Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2017.01.001

    Article  Google Scholar 

  33. I. Vamvasakis, I. Georgaki, D. Vernardou, G. Kenanakis, N. Kat-sarakis, J. Sol-Gel. Sci. Technol. (2015). https://doi.org/10.1007/s10971-015-3758-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, Data collection and analysis were performed by VRS, AAK and MJ. The first draft of the manuscript was written by VRS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Anu Kaliani.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreelakshmi, V.R., Anu Kaliani, A. & Jithin, M. Thermochromic and photocatalytic properties of thermally evaporated vanadium oxide–molybdenum oxide mixed oxide thin films. J Mater Sci: Mater Electron 34, 1244 (2023). https://doi.org/10.1007/s10854-023-10583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10583-8

Navigation