Skip to main content
Log in

Photocatalytic dye degradation, self-cleaning, and chromogenic properties of VO2 thin films for eco-friendly smart window application

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) thin film is a promising energy-efficient material owing to its reversible metal to insulator transition (MIT) property. Prepared thin films evinced both thermochromic and photochromic properties. Thermochromic property of VO2 thin film with a thickness of 300 nm showed a low transition temperature (54 °C) compared to 400 (64 °C) and 500 (73 °C) nm thickness. This clearly shows that the monoclinic structure (Insulating state) of VO2 thin films is converted to tetragonal rutile structure (metallic state) above 54 °C owing to its MIT property. The reversible MIT property was also clearly seen when the films were cooled from 100 to 30 °C. Also VO2 films exhibited metamaterial property in a small region of temperature. The photochromic property of 300 nm film exhibited higher transmittance of about 51% and decreased to 11% after 60 min of exposure to sunlight. After 72 h of bleaching it was seen that the transmittance increased to 49% proving a good quality of reversible photochromic property. The developed thin films showed a magnificent amount of hydrophilicity (low water contact angle of 12°) and also displayed photocatalytic degradation against methylene blue dye (about 55% under sunlight irradiation for 120 min). The attained properties of the thin film can be used for the development of environmentally friendly smart window applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acosta D, Magaña C, Hernández F, Chavez-Esquivel G, Cortes-Cordova DE, Huerta L, Valdés-Martínez OU (2020) Temperature effects on VO2 thin films deposited by RF sputtering for the degradation by photocatalysis of methylene blue and naproxen. Int J Chem React Eng. 20190214

  • Anand Ganesh A, Raut HK, Sreekumaran Nair A, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21:16304–16322

    Google Scholar 

  • Babkin EV, Charyev AA, Dolgarev AP, Urinov HO (1987) Metal-insulator phase transition in VO2: influence of film thickness and substrate, electronics and optics. Thin Solid Films 150:11–14

    CAS  Google Scholar 

  • Begum A, Hussain A, Rahman A (2012) Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films, Beilstein. J Nanotechnol 3:438–443

    Google Scholar 

  • Bian JM, Wang MH, Miao LH, Li XX, Luo YM, Zhang D, Zhang YZ (2015) Growth and characterization of VO2/p-GaN/sapphire heterostructure with phase transition properties. Appl Surf Sci 357:282–286

    CAS  Google Scholar 

  • Bose DN, De Purkayastha S (1981) Dielectric and photoconducting properties of Ga2Te3 and In2Te3 crystals. Mater Res Bull 16:635–642

    CAS  Google Scholar 

  • Bouderbala M, Hamzaoui S, Amrani B, Reshak AH, Adnane M, Sahraoui T, Zerdali M (2008) Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Physica B 403:3326–3330

    CAS  Google Scholar 

  • Brown GH, Zweig A (1973) Techniques of chemistry Vol. III photochromism. Phys Today 26(5):60

    Google Scholar 

  • Cesca T, Scian C, Petronijevic E, Leahu G, Voti RL, Cesarini G, Macaluso R, Mosca M, Sibilia C, Mattei G (2020) Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire. Nanoscale 12:851–863

    CAS  Google Scholar 

  • Chunzi Z, Cyril K, Yuanshi Li, Xiaoyu C, Fan Ye, Sheida S, Mohsen S, Shi-Jie W, Qiaoqin Y, Kasap S (2018) Near-zero IR transmission of VO2 thin films deposited on Si substrate. Appl Surf Sci 440:415–420

    Google Scholar 

  • Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y, Long Yi (2018) Thermochromic VO2 for energy- efficient smart windows. Joule 2:1707–1746

    CAS  Google Scholar 

  • Evlyukhin E, Howard SA, Paik H, Paez GJ, Gosztola DJ, Singh CN, Schlom DG, Leea W-C, Piper LFJ (2020) Directly measuring the structural transition pathways of strain engineered VO2 thin films. Nanoscale 12:18857–18863

    CAS  Google Scholar 

  • Faughnan BW, Staebler DL, Kiss ZJ (1971) Inorganic photochromic materials. In: Wolfe R, Kriessman CJ (eds) Applied Solid State Science, vol 2. Academic Press, New York, p 107

    Google Scholar 

  • Guo YX, Liu YF, Zou CW, Qi ZM, Wang YY, Xu YQ, Wang XL, Zhang F, Zhou R (2014) Oxygen pressure induced structure, morphology and phase-transition for VO2/c-sapphire films by PLD. Appl Phys A 115:1245–1250

    CAS  Google Scholar 

  • Hajlaoui T, Emond N, Quirouette C, Le Drogoff B, Margot J, Chaker M (2020) Metal–insulator transition temperature of boron-doped VO2 thin films grown by reactive pulsed laser deposition. Scr Mater 177:32–37

    CAS  Google Scholar 

  • He T, Yao JN (2004) Photochromism in transition-metal oxides. Res Chem Intermed 30:459–488

    CAS  Google Scholar 

  • Kang C, Zhang C, Yao Y, Yang Y, Zong H, Zhang L, Li M (2018) Enhanced Thermochromic properties of vanadium dioxide (VO2)/glass heterostructure by inserting a Zr-based thin film metallic glasses (Cu50Zr50)buffer layer. Appl Sci 8:1751

    Google Scholar 

  • Korber C, Suffner J, Klein A (2010) Surface energy controlled preferential orientation of thin films. J Phys d: Appl Phys 43:05530

    Google Scholar 

  • Kulkarni AK, Schulz KH, Lim TS, Khan M (1999) Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films 345:273–277

    Google Scholar 

  • Li Y, Ji S, Gao Y, Luo H, Kanehira M (2013) Core-shell VO2 @TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci Rep 3:1370

    Google Scholar 

  • Liang Z, Zhao Li, Meng W, Zhong C, Wei S, Dong B, Zuxun Xu, Wan Li, Wang S (2017) Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions. J Alloy Compd 694:124–131

    CAS  Google Scholar 

  • Lu C, Pan T, Gao M, Lin Y (2018) Raman spectra analysis of vanadium dioxide thin film deposited by polymer-assisted deposition method. Int Conf Electron Technol (ICET)

  • Makarevich AM, Sadykov II, Sharovarov DI, Amelichev VA, Adamenkov AA, Tsymbarenko DM, Plokhih AV, Esaulkov MN, Solyankine PM, Kaul AR (2015) Chemical synthesis of high-quality epitaxial vanadium dioxide films with sharp electrical and optical switch properties. J Mater Chem C 3:9197–9205

    CAS  Google Scholar 

  • Miyazaki H, Ichioka H, Suzuki H, Ota T (2013) Fabrication of photochromic molybdenum oxide-based composite films using peroxo isopoly molybdic acid. Bull Chem Soc Jpn 86:1323–1326

    CAS  Google Scholar 

  • Miyazaki H, Ishigaki T, Suzuki H, Ota T (2014) Improvement of the photochromic properties of WO3-based composite films by phosphorus addition. Bull Chem Soc Jpn 87:838–841

    CAS  Google Scholar 

  • Miyazaki H, Ishigaki T, Suzuki H, Ota T (2015) Controlling the photochromic properties of tungsten oxide based photochromic composite films using boron-, carbon-, and sulfur- tungstic heteropoly acids. J Ceram Soc JPN 129(9):884–887

    Google Scholar 

  • Miyazaki H, Matsuura T, Ota T (2017) Vanadium oxide-based photochromic composite film. RSC Adv 7:2388

    CAS  Google Scholar 

  • Monfort O, Petrisková P (2021) Binary and ternary vanadium oxides: general overview, physical properties, and photochemical processes for environmental applications. Processes 9:214

    CAS  Google Scholar 

  • Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882

    CAS  Google Scholar 

  • Muraoka Y, Hiroi Z (2002) Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl Phys Lett 80:583

    CAS  Google Scholar 

  • Nishio S, Kakihana M (2002) Evidence for visible light photochromism of V2O5. Chem Mater 14:3730–3733

    CAS  Google Scholar 

  • Nundy S, Ghosh A, Mallick TK (2020) Hydrophilic and super hydrophilic self-cleaning coatings by morphologically varying ZnO microstructures for photovoltaic and glazing applications. ACS Omega 5(2):1033–1039

    CAS  Google Scholar 

  • Omer AM (2009) Energy use and environmental impacts: a general review. J Renew Sustain Energy 053101

  • Pandian M, Matheswaran P, Gokul B, Sathyamoorthy R, Asokan K (2018) Preparation and characterization of indium chalcogenide thin films: a material for phase change memory. Appl Surf Sci 449:55–67

    CAS  Google Scholar 

  • Qazilbash MM, Brehm M, Byung-Gyu Chae, Ho PC, Andreev GO, Bong-Jun Kim, Sun Jin Yun, Balatsky AV, Maple MB, Keilmann F, Hyun-Tak Kim, Basov DN (2007) Mott Transition in VO2 revealed by infrared spectroscopy. Nano-Imaging 318

  • Qazilbash MM, Tripathi A, Schafgans AA, Kim B-J, Kim H-T, Cai Z, Holt MV, Maser JM, Keilmann F, Shpyrko OG, Basov DN (2011) Nanoscale imaging of the electronic and structural transitions in vanadium dioxide. Phys Rev B 83:165108

    Google Scholar 

  • Rajendra Kumar RT, Karunagaran B, Senthil Kumar V, Jeyachandran YL, Mangalaraj D, Narayandass SK (2003) Structural properties of V2O5 thin films prepared by vacuum evaporation. Mat Sci Semicon Proc 6:543–546

    Google Scholar 

  • Riede V, Neumann H, Sobotta H, Miedema AR (1981) Infrared optical properties of InTe. Solid State Commun 38:71–73

    CAS  Google Scholar 

  • Rousina R, Shivakumar GK (1989) Electron diffraction study of vacuum deposited In2Te3 thin films. Surf Coat Technol 38:353–358

    CAS  Google Scholar 

  • Sathiyavimal S, Vasantharaj S, Shanmugavel M, Manikand E, Nguyen-Tri P, Brindhadevi K, Pugazhendhi A (2020a) Facile synthesis and characterization of hydroxyapatite from fish bones: photocatalytic degradation of industrial dyes (crystal violet and Congo red). Prog Org Coat 148:105890

    CAS  Google Scholar 

  • Sathiyavimal S, Vasantharaj S, Kaliannan T, Pugazhendhi A (2020b) Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohydr Polym 241:116243

    CAS  Google Scholar 

  • Sathiyavimal S, Veeramani SV, Saravanan M, Rajalakshmi G, Kaliannan T, Al-Misned FA, Pugazhendhi A (2021) Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J Environ Chem Eng 9:105033

    CAS  Google Scholar 

  • Shinen MH, Al Saati SAA, Razooqi FZ (2018) Preparation of high transmittance TiO2 thin films by sol-gel technique as antireflection coating. IOP Conf Series J Phys Conf Series 1032:012018

    Google Scholar 

  • Singh P, Kaur D (2008) Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films. J Appl Phys 103:043507

    Google Scholar 

  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, Kalpana VN, Rajalakshmi G, Alsehli M, Elfasakhany A, Pugazhendhi A (2021) J Environ Chem Eng 9: 105772

  • Wang Y, Pan L, Li Y, Gavrilyuk AI (2014) Hydrogen photochromism in V2O5 layers prepared by the sol–gel technology. Appl Surf Sci 314:384–391

    CAS  Google Scholar 

  • Wang M, Bian J, Sun H, Liu W, Zhang Y, Luo Y (2016a) n-VO2/p-GaN based nitride–oxide heterostructure with various thickness of VO2 layer grown by MBE. Appl Surf Sci 389:199–204

    CAS  Google Scholar 

  • Wang Y, Runnerstom EL, Milliron DJ (2016b) Switchable materials for smart windows. Annu Rev Chem Biomol Eng 7(7):283–304

    Google Scholar 

  • Yan X, Abe R, Ohno T, Toyofuku M, Ohtani B (2008) Action spectrum analyses of photoinduced superhydrophilicity of titania thin films on glass plates. Thin Solid Films 516:5872–5876

    CAS  Google Scholar 

  • Zhang L, Dillert R, Bahnemann D, Vormoor M (2012) Photo-induced hydrophilicity and self-cleaning: models and reality. Energy Environ S Ci 5:7491

    CAS  Google Scholar 

  • Zhang H, Zhiming W, Wang C, Sun Y (2019) VO2 film with small hysteresis width and low transition temperature. Vacuum 170:108971

    CAS  Google Scholar 

  • Zhi B, Gao G, Tan X, Chen P, Wang L, Jin S, Wenbin W (2014) Thickness-dependent metal-to-insulator transition in epitaxial VO2 films. Mater Res Express 1:046402

    CAS  Google Scholar 

  • Zhou Y, Ramanathan S (2012) Heteroepitaxial VO2 thin films on GaN: structure and metal-insulator transition characteristics. J Appl Phys 074114:112

    Google Scholar 

  • Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT (2005) Ultraviolet light-induced hydrophilicity effect on TiO2 (110) (1×1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J Phys Chem B 109:15454–15462

    CAS  Google Scholar 

  • Zylbersztejn A, Mott NF (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11(11):4383–4395

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Kaliani Achuthan Unni.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveendran, S.V., Unni, A.K.A. & Mohanan, J. Photocatalytic dye degradation, self-cleaning, and chromogenic properties of VO2 thin films for eco-friendly smart window application. Appl Nanosci 13, 1841–1854 (2023). https://doi.org/10.1007/s13204-021-02079-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02079-w

Keywords

Navigation