Skip to main content
Log in

Floatable SnO2/EPE catalyst derived from waste expand aple poly ephylene for rapid degradation of rhodamine B dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The floatable photocatalysts were a new strategy towards real-world applications of photocatalytic degradation, which exhibited high utilization and recovery rate. Expand aple poly ephylene (EPE) was widely known as packaging fill materials, lots of used EPE as rubbish increased environment pollution. As it happens, EPE had the characteristics of light weight, abundant capillaries, which can be used as the carriers to prepare floatable photocatalysts. EPE/SnO2 was prepared through coprecipitation and low-temperature oxidation technique. In addition, the influence of Sn-doping amount, pH value, catalyst loading, the cationic and anionic on the photocatalytic efficiency toward rhodamine B (RhB) was investigated. Almost of the 50 mL RhB (15 mg/L) was decomposed within 50 min under visible-light. Importantly, the removal rate of the floatable photocatalysts EPE/SnO2 was fourteen times higher than pure SnO2 at 50 min. The removal efficiencies of EPE/SnO2 for RhB in tap water, river water and reservoir water were above 98% within 50 min. Moreover, the degradation efficiency of RhB still remained 96.3% after 10 recycling runs. Compared to the catalysts recently reported, the reusability of EPE/SnO2 was the highest. According to the free radical trapping experiment, 1O2, O2• − and h+ were confirmed the main reactive oxygen species participating the photocatalytic degradation over RhB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 2

Similar content being viewed by others

Data availability

Data and materials will be available if required.

References

  1. X.T. Zhou, T.Z. Ju, Q.Z. Wang, Synthesis of visible-light-driven g-C3N4/La2Ti2O7 heterojunction photocatalysts for improved photocatalytic performance. J. Mater. Sci. Mater. Electron. 31, 1265 (2020)

    Article  CAS  Google Scholar 

  2. B.T. Zhang, Q. Wang, Y. Zang, Y.G. Teng, M.H. Fan, Degradation of ibuprofen in the carbon dots/Fe3O4@carbon sphere pomegranate-like composites activated persulfate system. Sep. Purif. Technol. 242, 116820 (2020)

    Article  CAS  Google Scholar 

  3. X.T. Zhou, T.Z. Ju, Q.Z. Wang, Synthesis of visible-light-driven g-C3N4/La2Ti2O7 heterojunction photocatalysts for improved photocatalytic performance. J. Mater. Sci. Mater. Electron. 31, 1265 (2020)

    Article  CAS  Google Scholar 

  4. J.X. Cheng, N.Y. Wei, Y. Long, G.Y. Fan, Direct transformation of bulk cobalt foam into cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for peroxymonosulfate activation toward rhodamine B degradation. Sep. Purif. Technol. 277, 119441 (2021)

    Article  CAS  Google Scholar 

  5. B.W. He, Z.L. Wang, P. Xiao, T. Chen, J.G. Yu, L.Y. Zhang, Cooperative coupling of H2O2 production and organic synthesis over floatable polystyrenesphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv. Sci. 34, 2203225 (2022)

    CAS  Google Scholar 

  6. Z. Montazer, M.B.H. Najafi, D.B. Levin, Challenges with verifying microbial degradation of polyethylene. Polymers 12, 123 (2020)

    Article  CAS  Google Scholar 

  7. T. Schnabel, N. Jautzus, S. Mehling, C. Springer, J. Londong, Photocatalytic degradation of hydrocarbons and methylene blue using floatable titanium dioxide catalysts in contaminated water. J. Water Reuse Desal 11, 224 (2021)

    Article  CAS  Google Scholar 

  8. E. Park, J. Hur, Three-dimensionally interconnected porous PDMS decorated with poly(dopamine) and prussian blue for floatable, flexible, and recyclable photo-Fenton catalyst activated by solar light. Appl. Surf. Sci. 545, 148990 (2021)

    Article  CAS  Google Scholar 

  9. N. Tafreshi, S. Sharifnia, S. Moradi, Dehaghi, Photocatalytic treatment of a multicomponent petrochemical wastewater by floatable ZnO/Oak charcoal composite: optimization of operating parameters. J. Environ. Chem. Eng. 7, 103397 (2019)

    Article  CAS  Google Scholar 

  10. S.J. Ding, D.Y. Zhang, H.B. Wu, Z.C. Zhang, X.W. Lou, Synthesis of micro-sized SnO2@carbon hollow spheres with enhanced lithium storage properties. Nanoscale 4, 3651 (2012)

    Article  CAS  Google Scholar 

  11. X. Ao, J.J. Jiang, Y.J. Ruan, Z.S. Li, Y. Zhang, J.W. Sun, C.D. Wang, Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. J. Power Sources 359, 340 (2017)

    Article  CAS  Google Scholar 

  12. L. Zhang, H.B. Wu, B. Liu, X.W. Lou, Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy Environ. Sci. 7, 1013 (2014)

    Article  Google Scholar 

  13. Y. Chen, J. Sun, W.J. Qiu, X.W. Wang, W.R. Liu, Y.L. Huang, G.Z. Dai, J.L. Yang, Y.L. Gao, Deep-ultraviolet SnO2 nanowire phototransistors with an ultrahigh responsivity. Appl. Phys. A 125, 691 (2019)

    Article  Google Scholar 

  14. H. Li, P.L. Xu, D.L.,J.Y. He, H.L. Zu, J.J. Song, J. Zhang, F.H. Tian, M.J. Yun, F.Y. Wang, Low-voltage and fast-response SnO2 nanotubes/perovskite heterostructure photodetector. Nanotechnology 32, 375202 (2021)

    Article  CAS  Google Scholar 

  15. R.H. Liao, J. Han, Z.Y. Chen, J. Wang, H.Y. Wu, S.Q. Huang, C. Yan, Z. Wang, Facile solvothermal synthesis of nitrogen-doped SnO2 nanorods towards enhanced photocatalysis. RSC Adv. 12, 28629 (2022)

    Article  CAS  Google Scholar 

  16. X.M. Ye, W.J. Ye, Q.J. Zhang, S.P. Liu, Y.Z. Wang, H.Y. Yang, Wei, One step synthesis of Ni doped SnO2 nanospheres with enhanced lithium ion storage performance. New. J. Chem. 39, 130 (2015)

    Article  CAS  Google Scholar 

  17. Y. Liu, Y. Jiao, B.S. Yin, S.W. Zhang, F.Y. Qu, X. Wu, Hierarchical semiconductor oxide photocatalyst: a case of the SnO2 micro-flower. Nano-Micro Lett. 5, 234 (2013)

    Article  CAS  Google Scholar 

  18. H.L. Zhao, Y.T. Zhang, T.T. Li, Q.Y. Li, Y. Yu, Z.L. Chen, Y.F. Li, J.Q. Yao, Self-driven visible-near infrared photodetector with vertical CsPbBr3/PbS quantum dots heterojunction structure. Nanotechnology 31, 35202 (2020)

    Article  CAS  Google Scholar 

  19. A. Bhattacharjee, M. Ahmaruzzaman, A green approach for the synthesis of SnO2 nanoparticles and its application in the reduction of p-nitrophenol. Mater. Lett. 157, 260 (2015)

    Article  CAS  Google Scholar 

  20. A. Bhattacharjee, M. Ahmaruzzaman, A green and novel approach for the synthesis of SnO2 nanoparticles and its exploitation as a catalyst in the degradation of methylene blue under solar radiation. Mater. Lett. 145: 74 (2015)

    Article  CAS  Google Scholar 

  21. M. Ahmaruzzaman, M. Ahmaruzzaman, T. Sinha, A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta A 136, 751 (2015)

    Article  Google Scholar 

  22. A. Bhattacharjee, M. Ahmaruzzaman, A.K. Sil, T. Sinha, Amino acid mediated synthesis of luminescent SnO2 nanoparticles. J. Ind. Eng. Chem. 22, 138 (2015)

    Article  CAS  Google Scholar 

  23. A. Bhattacharjee, M. Ahmaruzzaman, Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight. RSC Adv. 5, 66122 (2015)

    Article  CAS  Google Scholar 

  24. A. Bhattacharjee, M. Ahmaruzzaman, Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin y dye: a green approach. Mater. Lett. 139, 418 (2015)

    Article  CAS  Google Scholar 

  25. B.K. Sahu, R.N. Juine, M. Sahoo, R. Kumar, A. Das, Interface of GO with SnO2 quantum dots as an efficient visible-light photocatalyst. Chemosphere 276, 130142 (2021)

    Article  CAS  Google Scholar 

  26. L. Peng, Y. Xiao, X.L. Wang, D.W. Feng, H. Yu, X.T. Dong, Realization of visible light photocatalysis by wide band gap pure SnO2 and study of In2O3 sensitization porous SnO2 photolysis catalyst. ChemistrySelect 4, 8460 (2019)

    Article  CAS  Google Scholar 

  27. N.N. Liu, S.M. Shang, D.J. Shi, Q.R. Cheng, Z.Q. Pan, Construction of hollow ZnO/Mn-ZIF-67 heterojunction photocatalysts: enhanced photocatalytic performance and mechanistic insight. New. J. Chem. 45, 2285 (2021)

    Article  CAS  Google Scholar 

  28. Q.H. Tian, Y. Chen, W. Zhang, J. Chen, L. Yang, Self-sacrificing template strategy to facilely prepare well-defifined SnO2@C quasi-hollow nanocubes for lithium-ion battery anode. Appl. Surf. Sci. 507, 145189 (2020)

    Article  CAS  Google Scholar 

  29. Y.C. Zhang, Z.N. Du, K.W. Li, High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. ACS Appl. Mater. Inter 3, 1528 (2011)

    Article  CAS  Google Scholar 

  30. Y.K. Sun, Q. Zhu, B. Bai, Y.L. Li, C. He, Novel all-solid-state Z-scheme SnO2/Pt/In2O3 photocatalyst with boosted photocatalytic performance on water splitting and 2,4-dichlorophenol degradation under visible light. Chem. Eng. J. 390, 124518 (2020)

    Article  CAS  Google Scholar 

  31. Q. Tian, X. Yu, L. Zhang, D. Yu, Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue. J. Colloid Interf Sci. 491, 294 (2017)

    Article  CAS  Google Scholar 

  32. J.O. Adeyemi, D.C. Onwudiwe, SnS2 and SnO2 nanoparticles obtained from organotin(IV) dithiocarbamate complex and their photocatalytic activities on methylene blue. Materials 13, 2766 (2020)

    Article  CAS  Google Scholar 

  33. S.Z. Wang, J.L. Wang, Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chem. Eng. J. 336, 595 (2018)

    Article  CAS  Google Scholar 

  34. Z.L. Li, S.Y. Li, X.R. Liu, S.Y. Yuan, Z.R. Zhang, E.K. Feng, Z.M. Yang, X.N. Han, Hollow SnS2 microcubes for photocatalytic activity toward rhodamine B. J. Mater. Sci. Mater. Electron. 33, 12447 (2022)

    Article  CAS  Google Scholar 

  35. H.Z. Chi, X. He, J.Q. Zhang, J. Ma, Efficient degradation of refractory organic contaminants by zerovalent copper/hydroxylamine/peroxymonosulfate process. Chemosphere 237, 124431 (2019)

    Article  CAS  Google Scholar 

  36. K.Y. Sunaina, K.G. Krishna, Ankush, S. Sujit, S.K. Kritika, A.K. Mehta, J. Ganguli, Menaka, Mechanistic insights of enhanced photocatalytic efficiency of SnO2-SnS2 heterostructures derived from partial sulphurization of SnO2. Sep. Purif. Technol. 242, 116835 (2020)

    Article  CAS  Google Scholar 

  37. H.H. Xiao, F.Y. Qu, A. Umar, X. Wu, Facile synthesis of SnO2 hollow microspheres composed of nanoparticles and their remarkable photocatalytic performance. Mater. Res. Bull. 74, 284 (2016)

    Article  CAS  Google Scholar 

  38. X.Y. Zhang, Y. Liu, Q.W. Nan, J.F. Hou, L.J. Qiu, B. Zuo, C.B. Hu, J.T. Lei Hu, X. Tang, Liu, In-situ dispersing ultrafine Fe2O3 nanoparticles in mesoporous silicas for efficient peroxymonosulfate-activated degradation of tetracycline over a broad pH range. J. Environ. Chem. Eng. 10, 106904 (2022)

    Article  CAS  Google Scholar 

  39. W. Lei, Y. Li, D. Zhang, Y. Lan, J. Guo, CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate. J. Hazard. Mater 381, 121209 (2020)

    Article  Google Scholar 

  40. A. Palai, N.R. Panda, D. Sahu, Novel ZnO blended SnO2 nanocatalysts exhibiting superior degradation of hazardous pollutants and enhanced visible photoemission properties. J. Mol. Struct. 1244, 131245 (2021)

    Article  CAS  Google Scholar 

  41. J.J. Tang, T. Zhang, Q. Zhang, Z. Duan, Y. Zhu, In-situ growth UiO-66 on Bi2O3 to fabrication p-p heterojunction with enhanced visible-light degradation of tetracycline. J. Solid State Chem. 302, 122353 (2021)

    Article  CAS  Google Scholar 

  42. C.H. Shen, X.J. Wen, Z.H. Fei, Z.T. Liu, Q.M. Mu, Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 p-n heterojunction photocatalysts. Chem. Eng. J. 391, 123612 (2020)

    Article  CAS  Google Scholar 

  43. J.J. Li, Z. Zhao, Z. Li, H. Yang, S. Yue, Y. Tang, Q.Z. Wang, Construction of immobilized films photocatalysts with CdS clusters decorated by metal cd and BiOCl for photocatalytic degradation of tetracycline antibiotics. Chin. Chem. Lett. 33, 3705 (2022)

    Article  CAS  Google Scholar 

  44. Y.J. Ma, J. Jiang, A.Q. Zhu, P.F. Tan, Y. Bian, W.X. Zeng, H. Cui, J. Pan, Enhanced visible-light photocatalytic degradation by Mn3O4/CeO2 heterojunction: a Z-scheme system photocatalyst. Inorg. Chem. Front. 5, 2579 (2018)

    Article  CAS  Google Scholar 

  45. C. Huang, Y.L. Wang, M. Gong, W. Wang, Y. Mu, Hu, α-MnO2/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of rhodamine B. Sep. Purit. Technol. 230, 115877 (2022)

    Article  Google Scholar 

  46. G. Eshaq, S. Wang, H. Sun, M. Sillanpaa, Superior performance of FeVO4@CeO2 uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. J. Hazard. Mater. 382, 121059 (2020)

    Article  CAS  Google Scholar 

  47. Z. Bano, R.M. Yousaf Saeed, S. Zhu, M.Z. Xia, S. Mao, W. Lei, F.Y. Wang, (2020) Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants. Chemosphere, 246: 846 

    Article  CAS  Google Scholar 

  48. Y.T. Zhao, Y. Zhao, Y. Zuo, G. He, Q. Chen, Q. Meng, H. Chen, Synthesis of graphene-based CdS@CuS core-shell nanorods by cation-exchange for efficient degradation of ciprofloxacin. J. Alloys Compd. 869, 159305 (2021)

    Article  CAS  Google Scholar 

  49. X.Y. Fang, G.A. Lu, A. Lw, G.B. Han, C. Lx, W.A. Ying, Enhanced degradation of bisphenol A by mixed ZIF derived CoZn oxide encapsulated N-doped carbon via peroxymonosulfate activation: the importance of N doping amount. J. Hazard. Mater. 419, 126363 (2021)

    Article  CAS  Google Scholar 

  50. T.J. Ni, Z.B. Yang, H. Zhang, L.P. Zhou, W. Guo, L.K. Pan, Z.J. Yang, K.W. Chang, C.P. Ge, D. Liu, Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light. J. Colloid Interf. Sci. 615, 650 (2022)

    Article  CAS  Google Scholar 

  51. Y.B. Zhou, Y. Zhang, X. Hu, Novel zero-valent Co–Fe encapsulated in nitrogen-doped porous carbon nanocomposites derived from CoFe2O4@ZIF-67 for boosting 4-chlorophenol removal via coupling peroxymonosulfate. J. Colloid Interf. Sci. 575, 206 (2020)

    Article  CAS  Google Scholar 

  52. T.T. Truong, T.T. Pham, T.T.T. Truong, T.D. Pham, Synthesis, characterization of novel ZnO/CuO nanoparticles, and the applications in photocatalytic performance for rhodamine B dye degradation. Environ. Sci. Pollut. R 29, 22576 (2022)

    Article  CAS  Google Scholar 

  53. S. Em, M. Yedigenov, L. Khamkhash, S. Atabaev, A. Molkenova, S.G. Poulopoulos, T.S. Atabaev, Fabrication of Ag/ZnO@N-carbon core@shell photocatalyst for efficient photocatalytic degradation of rhodamine B. Front. Chem. 10, 950007 (2022)

    Article  Google Scholar 

  54. X.B. Yang, J.P. Hu, J.J. Pan, Y.B. Shen, K.J. Cheng, A. Taoufyq, S. Villain, J.R. Gavarri, M. Mansori, J.C. Valmalette, A. Benlhachemi, High photocatalytic performance of bismuth phosphate and corresponding photodegradation mechanism of rhodamine B. Res. Chem. Intermediat. 48, 3315 (2022)

    Article  Google Scholar 

  55. M. Saeed, N. Alwadai, L.B. Farhat, A. Baig, W. Nabgan, I. Munawar, Co3O4-Bi2O3 heterojunction: an effective photocatalyst for photodegradation of rhodamine B dye. Arab. J. Chem. 15, 103732 (2022)

    Article  CAS  Google Scholar 

  56. Y. Qi, J.J. Zhao, H.T. Wang, M.F. Yan, T.Y. Guo, Structural engineering of BiOBr nanosheets for boosted photodegradation performance toward rhodamine b. RSC Adv. 12, 8908 (2022)

    Article  CAS  Google Scholar 

  57. Y.Y. Zhao, H.X. Guo, J. Liu, Q. Xia, J.F. Liu, X.H. Liang, E.Z. Liu, J. Fan, Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: mechanism and toxicity assessment. J. Colloid Interf. Sci. 627, 180 (2022)

    Article  CAS  Google Scholar 

  58. A. Rovisco, M. Morais, R. Branquinho, E. Fortunato, R. Martins, P. Barquinha, Microwave-assisted synthesis of Zn2SnO4 nanostructures for photodegradation of rhodamine b under UV and sunlight. Nanomaterials 12, 2119 (2022)

    Article  CAS  Google Scholar 

  59. S.J. Tong, J. Zhou, L. Ding, C. Zhou, Y. Liu, S.Q. Li, J. Meng, S.L. Zhu, S. Chatterjee, F. Liang, Preparation of carbon quantum dots/TiO2 composite and application for enhanced photodegradation of rhodamine B. Colloid Surf. A 648, 129342 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Ningxia Natural Science Foundation Project (2021AAC03242), the Engineering Research Center of Liupanshan (HGZD22-07).

Author information

Authors and Affiliations

Authors

Contributions

All the persons have made substantial contributions to the work reported. The first draft of the manuscript was written by ZLL and XNQ. Material preparation was performed by SYL. Data processing was performed by SYL, ZRZ and SYY. Writing-Reviewing was performed by SYL and ZQW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Z. L. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1213.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.L., Li, S.Y., Liu, X.R. et al. Floatable SnO2/EPE catalyst derived from waste expand aple poly ephylene for rapid degradation of rhodamine B dye. J Mater Sci: Mater Electron 34, 1236 (2023). https://doi.org/10.1007/s10854-023-10562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10562-z

Navigation