Skip to main content
Log in

Synthesis of cadmium-doped zinc oxide nanoparticles via sol–gel method for ethanol gas sensing application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pristine- and Cadmium-doped Zinc Oxide nanoparticles (\({\mathrm{Zn}}_{1-x}{\mathrm{Cd}}_{x}\) O) with 1-wt% and 3-wt% Cadmium concentrations have been synthesized via the sol–gel technique. The XRD results confirmed that the prepared nanomaterials possessed a Hexagonal Wurtzite crystalline structure. The mean crystalline size of the nanoparticles was estimated to be between 19 and 21 nm. The FESEM analysis confirmed that the prepared nanoparticles have irregularly shaped morphology. EDX study confirms the presence of Cadmium doping in ZnO. The fundamental vibrational bands of zinc oxide were confirmed by Raman spectra. The existence of various bonds had been confirmed using Fourier Transform Infrared spectroscopy (FTIR). The variation in electrical current with a variation in environment (air to Ethanol and then back to air) has been employed to determine sensing response at 100 ppm and 200 ppm concentrations of Ethanol. The percentage sensing response of the prepared materials has been observed to be increased with the rise in Cd content as well as Ethanol ppm level. The Cadmium-doped ZnO nanoparticles with 3 wt% of Cd have revealed the highest percentage sensing response of 24.82 and 30.92% at 100 and 200 ppm, respectively, which is greater than that of pristine ZnO. The lowest response time of 125 s was obtained for 3% Cadmium-doped ZnO nanoparticles. Thus Cadmium doping has improved the sensing response of pure zinc oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Zhu, W. Zeng, Sens. and Act. A. 267, 242–267 (2017)

    Article  CAS  Google Scholar 

  2. H. Ji, W. Zeng, Y. Li, NANO 11, 22664–22684 (2019)

    CAS  Google Scholar 

  3. X. Zhou, Z. Xue, X. Chen, C. Huang, W. Bai, Z. Lu, T. Wang, J. Mater. Chem. B. 8, 3231–3248 (2020)

    Article  CAS  Google Scholar 

  4. S. Sharma, P. Chauhan, S. Husain, Adv. Mater. Proc. 1(2), 220–225 (2016)

    Article  Google Scholar 

  5. V. Kumar, R. Madan, D. Mohan, J. Mater. Sci. Mater. Electr. 33, 7655 (2022)

    Article  CAS  Google Scholar 

  6. M. Karimi, J. Saydi, M. Mahmoodi, J. Seidi, M. Ezzati, S.S. Anari, B. Ghasemian, J. Phys. Chem. Solids 74, 1392–1398 (2013)

    Article  CAS  Google Scholar 

  7. Z. Yanga, Y. Huang, G. Chena, Z. Guoc, S. Cheng, S. Huange, Sens. Actuators B 140, 549–556 (2009)

    Article  Google Scholar 

  8. Y. Patil, R.B. Pedhekar, S. Patil, S. Kosalge, F.C. Raghuvanshi, Mater. Sci. Eng. 1126, 012046 (2021)

    CAS  Google Scholar 

  9. R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Nanosci. Nanotechnol. 5(1), 1–6 (2015)

    Google Scholar 

  10. S. Jurablu, M. Farahmandjou, T.P. Firoozabadi, J. Sci. Islam. Repub. Iran. 26(3), 281–285 (2015)

    Google Scholar 

  11. A. Vishwakarma, S.P. Singh, Int. J. Res. Appl. Sci. Eng. Technol. 8, 2321–9653 (2020)

    Google Scholar 

  12. R. Kumara, A. Umarc, R. Kumar, D. Ranaa, M.S. Chauhana, J. Alloys. Compd. 863, 158649 (2021)

    Article  Google Scholar 

  13. B. Altun, I. Karaduman, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Appl. Phys. A. (2021). https://doi.org/10.1007/s00339-021-04843-9

    Article  Google Scholar 

  14. S.A. Khayyat, A.S. Abaker, M. Umar, A. Alkattan, O. Manal, A.D. Najlaa, S. Baskoutas, J. Nanosci. Nanotechnol. 12, 8453–8458 (2012)

    Article  CAS  Google Scholar 

  15. L. Krejcova, L. Richtera, D. Hynek, J. Labuda, V. Adam, Biosens. Bioelectron. 97, 384–399 (2017)

    Article  CAS  Google Scholar 

  16. S. Bai, S. Chen, Y. Zhao, J. Mater. Chem. A 2, 16697–16706 (2014)

    Article  CAS  Google Scholar 

  17. L.T.T. Nguyen, L.T.H. Nguyen, A.T.T. Duong, B.D. Nguyen, N.Q. Hai, V.H. Chu, T.D. Nguyen, L.G. Bach, Mater. 12(8), 1195 (2019)

    Article  CAS  Google Scholar 

  18. E. Ozugurlu, J. Alloys Compd. 861, 158620 (2021)

    Article  CAS  Google Scholar 

  19. X. Li, Y. Chang, Y. Long, Mater. Sci. Eng. C. 32, 817–821 (2012)

    Article  CAS  Google Scholar 

  20. S. Suman, V. Kumar, S. Kumar, D. Kumar, Proceedings of Physics (Springer, Cham, 2017), p.178

    Google Scholar 

  21. T.B. Hassan, S.M. Salih, Mater. Today: Proc 42, 2320–2325 (2021)

    CAS  Google Scholar 

  22. J. Hayder, A. Asedy, N. Bidina, A. Shuruq, A. Khafaji, H. Bakhtiar, Mater. Sci. Semicond. Process. 77, 50–57 (2018)

    Article  Google Scholar 

  23. C. Hong, Q. Zhou, Z. Lu, A. Umar, R. Kumar, Z. Wei, X. Wu, L. Xu, S.H. Kim, Mater. Express. 7, 380–388 (2017)

    Article  CAS  Google Scholar 

  24. R.A. Zargar, M. Arora, S. Chackrabarti, S. Ahmad, J. Kumar, A.K. Hafiz, S. Mod, Phys. Lett. B. 30, 1650244 (2016)

    CAS  Google Scholar 

  25. X. Liu, K. Pan, W. Li, D. Hu, S. Liu, Y. Wang, Ceram. Int. 40, 9931–9939 (2014)

    Article  CAS  Google Scholar 

  26. J.L. Noel, R. Udayabhaskar, B. Renganathan, S.M. Mariappan, D. Sastikumar, B. Karthikeyana, Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 634–638 (2014)

    Article  CAS  Google Scholar 

  27. B.L. Zhu, C.S. Xie, D.W. Zeng, W.L. Song, A.H. Wang, Mater. Chem. Phys. 89, 148–153 (2005)

    Article  CAS  Google Scholar 

  28. A.S.M.I. Uddin, D.T. Phan, G.S. Chung, Z. Yang, Sens. Actuators B Chem. 207, 362–369 (2015)

    Article  Google Scholar 

  29. K.R. Devi, G. Selvan, M. Karunakaran, K. Kasirajan, M. Shkir, S. Alfaify, Superlattices Microstruct. 143, 106547 (2020)

    Article  CAS  Google Scholar 

  30. A. Gurlo, Nanoscale 3, 154–165 (2011)

    Article  CAS  Google Scholar 

  31. H. Song, H. Yang, X. Ma, J. Alloys. Compd. 578, 272–278 (2013)

    Article  CAS  Google Scholar 

  32. S.P. Bharath, K.V. Bangera, G.K. Shivakumar, Superlattices Microstruct. 124, 72–78 (2018)

    Article  CAS  Google Scholar 

  33. K.R. Devi, G. Selvan, M. Karunakaran, I.L.P. Raj, A.F. El-Rehim, H.Y. Zahran, M. Shkir, S. AlFaify, Opt. Quantum Electron. 52, 501 (2020)

    Article  CAS  Google Scholar 

  34. M. Sathya, G. Selvan, K. Kasirajan, S. Usha, P. Baskaran, M. Karunakaran, J. Mater. Sci. Mater. Electron 33, 443–457 (2022)

    Article  CAS  Google Scholar 

  35. N.S. Ramgir, M. Ghosh, P. Veerender, N. Datta, M. Kaur, D.K. Aswal, S.K. Gupta, Sens. Actuators B Chem. 156, 875–880 (2011)

    Article  CAS  Google Scholar 

  36. D. Thomasa, A. Thomas, A.E. Tom, K.K. Sadasivuni, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, Synth. Met. 232, 123–130 (2017)

    Article  Google Scholar 

  37. L. Zhanga, X. Jinga, J. Liua, J. Wanga, Y. Sun, Sens. Actuators B Chem. 221, 1492–1498 (2015)

    Article  Google Scholar 

  38. S. Fairose, S. Ernest, S. Daniel, Sens. Imaging 19, 1 (2018)

    Article  CAS  Google Scholar 

  39. S. Nie, D. Dastan, J. Li, W.D. Zhou, S.S. Wu, Y.W. Zhou, X.T. Yin, J. Phys. Chem. Solids 150, 109864 (2021)

    Article  CAS  Google Scholar 

  40. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B.H. Koo, Curr. Appl. Phys. 13, 564–568 (2013)

    Article  Google Scholar 

  41. N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Eur. J. Inorg. Chem. 2015, 1912–1923 (2015)

    Article  CAS  Google Scholar 

  42. R. Paulraj, P. Shankar, G.K. Mani, L. Nallathambi, J.B.B. Rayappan, J. Mater. Sci. 28, 10799–10805 (2017)

    CAS  Google Scholar 

  43. Y. Huang, G. Chena, Z. Guo, S. Cheng, S. Huange, Sens. Act. B. 140, 549–556 (2009)

    Article  Google Scholar 

  44. P. Scherrer, Nachr. Ges. Wiss. Gött. 26, 98–100 (1918)

    Google Scholar 

  45. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  46. V. Uvarov, I. Popov, Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  47. N. Rana, S. Chand, A.K. Gathania, Ceram. Int. 41, 12032–12037 (2015)

    Article  CAS  Google Scholar 

  48. A. Umar, M.J. Khan, R. Kumar, H. Algarni, J. Nanosci. Nanotechnol. 18, 3557–3562 (2018)

    Article  CAS  Google Scholar 

  49. A.A. Hajry, A. Umar, Y.B. Hahn, D.H. Kim, Superlattices Microstruct. 45, 529–534 (2009)

    Article  Google Scholar 

  50. R. Zhao, K. Li, Z. Wang, X. Xing, Y. Wang, J. Phys. Chem. Solids 112, 43–49 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors B. Singh, V. Kumar, and R. Madan are thankful to the Central Instrumentation Laboratory of the University for experimental facilities. The authors R. Garg and D. Mohan are thankful to the Department of Science and Technology, India for providing the Fund for Improvement of S&T Infrastructure (FIST) grant for the establishment of common facilities.

Author information

Authors and Affiliations

Authors

Contributions

IBS (author) works under the supervision of DM and RG who helped me in editing and revising the manuscript. VK and RM helped in the analysis of characterization techniques, like XRD, FESEM, and Raman spectra, and gas sensing measurements.

Corresponding author

Correspondence to Bajinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical approval

The article does not contain any study involving any humans and animals performed by any author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Kumar, V., Madan, R. et al. Synthesis of cadmium-doped zinc oxide nanoparticles via sol–gel method for ethanol gas sensing application. J Mater Sci: Mater Electron 34, 1114 (2023). https://doi.org/10.1007/s10854-023-10537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10537-0

Navigation