Skip to main content
Log in

Formation, structure, and optical performance of AgCd/Ag5Cd8 phases in thin film form

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films with approximate compositions of Ag50Cd50 and Ag38Cd62, corresponding to the intermediate phases AgCd and Ag5Cd8 found in the Ag–Cd intermetallic system, were deposited by two independent approaches—(1) co-evaporation of silver and cadmium and (2) deposition of consecutive very thin sublayers from the two metals (stacks) without further annealing. The alloying of the elements in the as-deposited thin films was studied by X-ray diffraction analysis. All samples contained a mixture of intermetallic Ag–Cd phases. The deposition method has a significant influence on both the phase formation and the structure of the as-deposited thin films. The co-evaporation method leads to formation of a wider variety of intermetallic compounds appearing as larger grains on the surface, while the alloying of Ag–Cd stacks reflects in much smaller dimensions of the grains, composed mainly by the phases corresponding to the composition of the thin films. The optical properties of the thin film coatings were characterized by UV–Vis–NIR spectrophotometry and spectroscopic ellipsometry. The dispersion of the complex permittivity, \(\varepsilon^{*} = \varepsilon^{\prime} + j \cdot \varepsilon^{\prime\prime}\), was analyzed by the Drude–Lorentz model. The results show that the thin Ag–Cd films possess smaller values of the imaginary part of the complex permittivity than the thin silver films in the spectral region 4–6 eV. A maximum in the spectral range 6.2–8 eV of the loss function, \(\mathrm{Im}\{-1/{\varepsilon }^{*}\}\) is observed. Based on these results the potential application of the intermetallic compounds AgCd and Ag5Cd8 as materials for UV plasmonics and photonics devices has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Zhao, Zh. Lin, W. Zhu, H.J. Lezec, T. Xu, A. Agrawal, Ch. Zhang, K. Huang, Nanophotonics 10, 2283 (2021). https://doi.org/10.1515/nanoph-2021-0083

    Article  CAS  Google Scholar 

  2. Ch.D. Geddes (ed.), Surface Plasmon Enhanced, Coupled and Controlled Fluorescence. (Wiley, Hoboken, 2017), pp.295–308. https://doi.org/10.1002/9781119325161

    Book  Google Scholar 

  3. N. Kinsey, Cl. DeVault, A. Boltasseva, V.M. Shalaev, Nat. Rev. Mater. 4, 742 (2019). https://doi.org/10.1038/s41578-019-0133-0

    Article  CAS  Google Scholar 

  4. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, J. Opt. 14, 063001 (2012). https://doi.org/10.1088/2040-8978/14/6/063001

    Article  CAS  Google Scholar 

  5. Y. Gutiérrez, R.A. de la Osa, D. Ortiz, J.M. Saiz, F. González, F. Moreno, Appl. Sci. 8, 64 (2018). https://doi.org/10.3390/app8010064

    Article  CAS  Google Scholar 

  6. J.M. McMahon, S.K. Gray, G.C. Schatz, Phys. Chem. Chem. Phys. 15, 5415 (2013). https://doi.org/10.1039/C3CP43856B

    Article  CAS  Google Scholar 

  7. C. Gong, M.S. Leite, ACS Photonics 3, 507 (2016). https://doi.org/10.1021/acsphotonics.5b00586

    Article  CAS  Google Scholar 

  8. E.L. Green, L. Muldawer, Phys. Rev. B 2, 330 (1970). https://doi.org/10.1103/PhysRevB.2.330

    Article  Google Scholar 

  9. K.J. Kim, L.-Y. Chen, D.W. Lynch, Phys. Rev. B 38, 13107 (1988). https://doi.org/10.1103/PhysRevB.38.13107

    Article  CAS  Google Scholar 

  10. K.S.B. De Silva, V.J. Keast, A. Gentle, M.B. Cortie, Nanotechnology 28, 095202 (2017). https://doi.org/10.1088/1361-6528/aa5782

    Article  CAS  Google Scholar 

  11. M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys.: Condens. Matter 22, 143201 (2010). https://doi.org/10.1088/0953-8984/22/14/143201

    Article  CAS  Google Scholar 

  12. M. Hansen, K. Anderko, Constitution of Binary Alloys, Metallurgy and Metallurgical Engineering Series (McGraw and Hill Book Company Inc., New York, 1958), pp.13–16

    Google Scholar 

  13. R. Todorov, T. Hristova-Vasileva, V. Katrova, A. Atanasova, G. Milushev, J. Alloys Compd. 897, 163253 (2022). https://doi.org/10.1016/j.jallcom.2021.163253

    Article  CAS  Google Scholar 

  14. G.I. Petrenko, A.S. Fedorow, Z. Anorg. Chem. 70, 157 (1911)

    Article  CAS  Google Scholar 

  15. P.D. Anderson, J. Am. Ceram. Soc. 80(13), 3171–3175 (1958). https://doi.org/10.1021/ja01546a001

    Article  CAS  Google Scholar 

  16. V. Simic, Z. Marinkovic, Thin Solid Films 209, 44 (1992). https://doi.org/10.1016/0040-6090(92)90008-Y

    Article  CAS  Google Scholar 

  17. H. Amar, K.H. Johnson, K.P. Wang, Phys. Rev. 148, 672 (1966). https://doi.org/10.1103/PhysRev.148.672

    Article  CAS  Google Scholar 

  18. L. Muldawer, Phys. Rev. 127, 1551 (1962). https://doi.org/10.1103/PhysRev.127.1551

    Article  CAS  Google Scholar 

  19. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  20. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  21. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013). https://doi.org/10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  22. W. Cai, V. Shalaev, Optical Metamaterials, Fundamentals and Applications (Springer, New York, 2010), pp.1–36. https://doi.org/10.1007/978-1-4419-1151-3_2

    Book  Google Scholar 

  23. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 70, 285 (1935)

    Article  CAS  Google Scholar 

  24. C. Noguez, J. Phys. Chem. C 111, 3806 (2007). https://doi.org/10.1021/jp066539m

    Article  CAS  Google Scholar 

  25. H. Reather, Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics, vol. 88 (Springer, Heidelberg, 1980), pp.4–23. https://doi.org/10.1007/BFb0045954

    Book  Google Scholar 

  26. L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, Cambridge, 2012), pp.369–413

    Book  Google Scholar 

  27. H. Wormeester, Th.W.H. Oates, Ellipsometry at the Nanoscale (Springer, Berlin, 2013), pp.225–256. https://doi.org/10.1007/978-3-642-33956-1_6

    Book  Google Scholar 

  28. T.W.H. Oates, A. Mucklich, Nanotechnology 16, 2606–2611 (2005). https://doi.org/10.1088/0957-4484/16/11/023

    Article  CAS  Google Scholar 

  29. S. Sun, L. Wu, P. Bai, C.E. Png, Phys. Chem. Chem. Phys. 18, 19324 (2016). https://doi.org/10.1039/C6CP03303B

    Article  CAS  Google Scholar 

  30. T.S. Anderson, R.H. Magruder III., D.L. Kinser, R.A. Zuhr, D.K. Thomas, Nucl. Instr. Methods Phys. Res. B 124, 40 (1997). https://doi.org/10.1016/S0257-8972(98)00431-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by contract KP-06-N38/8 - 05.12.2019 “Nanoscale 5p-block and silver coatings for plasmonic applications” with the Bulgarian National Science Fund (BNSF).

Funding

This work is financially supported by contract KP-06-N38/8 - 05.12.2019 “Nanoscale 5p-block and silver coatings for plasmonic applications” with the Bulgarian National Science Fund (BNSF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RT (thin film deposition and spectroscopic ellipsometry), TH-V (XRD analysis), VK (thin film deposition and UV–Vis–NIR spectrophotometry analysis), VS (AFM), AA (thin film deposition), and GM (X-ray microanalysis). The first draft of the manuscript was written by RT and TH-V and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rosen Todorov.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and/or animal participants

The article does not include research on human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorov, R., Hristova-Vasileva, T., Katrova, V. et al. Formation, structure, and optical performance of AgCd/Ag5Cd8 phases in thin film form. J Mater Sci: Mater Electron 34, 1093 (2023). https://doi.org/10.1007/s10854-023-10522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10522-7

Navigation