Skip to main content
Log in

Optical and structural engineering of CH3NH3PbI3 film via CB-antisolvent for efficient and stable perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we investigated details in the effect of using chlorobenzene (CB) antisolvent on the structural and optical properties of CH3NH3PbI3 perovskite films such as surface roughness, crystallite size, lattice constants, micro-strain, dislocation density, direct and indirect optical bandgap, refractive index, extinction coefficient, dielectric constant, optical conductivity, and Urbach energy (Eu) for achieving efficient and stable perovskite solar cells (PSCs). The RMS roughnesses of the perovskite films with and without CB were 8.32 and 150.63 nm, respectively. The use of CB during the deposition process of CH3NH3PbI3 film caused the shrinkage of the perovskite lattice and the size of the crystallite was larger than the sample without CB (56. 99 nm and 44.99 nm for samples with and without CB, respectively). The direct optical band-gap for samples with and without CB was 1.61 and 1.51 eV, respectively, and their indirect band-gap was 1.54 and 1.45 eV, respectively. The difference between the direct and indirect optical band gap for both samples was 60 meV (Rashba splitting effect). Eu values for perovskite films with and without CB were 0.04 and 0.22 eV, respectively. The efficiency of PSCs with and without CB was ~ 14% and ~ 6%, respectively. The solar cell related to the sample with and without CB maintained 84 and 18% of its initial efficiency after 60 days, respectively (environmental conditions: 40% RH and 30 ˚C). This comparative study of the structural and optical properties of the perovskite film provides the basis for future enhancements to the efficiency and stability of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

 Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

 References

  1. S. Pirzad Ghias Abadi, M. Borhani Zarandi, N.Jahanbakhshi Zadeh, Synth. Met. 289, 117115 (2022). https://doi.org/10.1016/j.synthmet.2022.117115

    Article  CAS  Google Scholar 

  2. Y. Cui, S. Wang, L. Ding, F. Hao, Adv. Energy Sustain. Res. 2, 2000047 (2021). https://doi.org/10.1002/aesr.202000047

    Article  CAS  Google Scholar 

  3. B. Gao, J. Meng, J. Lu, R. Zhao, Mater. Lett. 274, 127995 (2020). https://doi.org/10.1016/j.matlet.2020.127995

    Article  CAS  Google Scholar 

  4. Y. Zhang et al., ACS Appl. Mater. Interfaces 12, 24905 (2020). https://doi.org/10.1021/acsami.0c06412

    Article  CAS  Google Scholar 

  5. S.A.A. Shah, M.H. Sayyad, J. Sun, Z. Guo, J. Rare Earths 40, 1651–1667 (2022). https://doi.org/10.1016/j.jre.2021.12.001

    Article  CAS  Google Scholar 

  6. S.A. Shah, M.H. Sayyad, K. Khan, J. Sun, Z. Guo, Nanomaterials 11, 2151 (2021). https://doi.org/10.3390/nano11082151

    Article  CAS  Google Scholar 

  7. M. Kim et al., Science 375, 302 (2022). https://doi.org/10.1126/science.abh1885

    Article  CAS  Google Scholar 

  8. X. Li et al., Science 353, 58 (2016). https://doi.org/10.1126/science.aaf8060

    Article  CAS  Google Scholar 

  9. C.A. Otálora, G. Gordillo, L. Herrera, J. Estrada, J. Mater. Sci.: Mater. Electron. 32, 6912 (2021). https://doi.org/10.1007/s10854-021-05397-5

    Article  CAS  Google Scholar 

  10. N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Thin Solid Films 671, 139 (2019). https://doi.org/10.1016/j.tsf.2018.12.029

    Article  CAS  Google Scholar 

  11. S.D. Stranks et al, Science 342, 341 (2013). https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  12. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  13. J. Burschka et al., Nature 499, 316 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  14. N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Thin Solid Films 660, 65 (2018). https://doi.org/10.1016/j.tsf.2018.03.038

    Article  CAS  Google Scholar 

  15. J.W. Jung, S.T. Williams, A.K.Y. Jen, RSC Adv. 4, 62971 (2014). https://doi.org/10.1039/C4RA13212B

    Article  CAS  Google Scholar 

  16. J.Y. Jeng et al., Adv. Mater. 25, 3727 (2013). https://doi.org/10.1002/adma.201301327

    Article  CAS  Google Scholar 

  17. D. Gupta, P. Veerender, C. Sridevi, P. Jha, S. Koiry, A. Chauhan, J. Mater. Sci.: Mater. Electron. 34, 66 (2023). https://doi.org/10.1007/s10854-022-09516-8

    Article  CAS  Google Scholar 

  18. Y. Yun et al., Adv. Mater. 32, 1907123 (2020). https://doi.org/10.1002/adma.201907123

    Article  CAS  Google Scholar 

  19. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014). https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  20. N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 137, 8696 (2015). https://doi.org/10.1021/jacs.5b04930

    Article  CAS  Google Scholar 

  21. S. Ghosh, S. Mishra, T. Singh, Adv. Mater. Interfaces 7, 2000950 (2020). https://doi.org/10.1002/admi.202000950

    Article  CAS  Google Scholar 

  22. M.M. Tavakoli, A. Simchi, X. Mo, Z. Fan, Mater. Chem. Front. 1, 1520 (2017). https://doi.org/10.1039/C6QM00379F

    Article  CAS  Google Scholar 

  23. M.M. Tavakoli, R. Tavakoli, P. Yadav, J. Kong, J. Mater. Chem. A 7, 679 (2019). https://doi.org/10.1039/C8TA10857A

    Article  CAS  Google Scholar 

  24. M.M. Tavakoli et al., Nanoscale 9, 5828 (2017). https://doi.org/10.1039/C7NR00444C

    Article  CAS  Google Scholar 

  25. M. Konstantakou, D. Perganti, P. Falaras, T. Stergiopoulos, Crystals 7, 291 (2017). https://doi.org/10.3390/cryst7100291

    Article  CAS  Google Scholar 

  26. M. Saliba et al., Science 354, 206 (2016). https://doi.org/10.1126/science.aah5557

    Article  CAS  Google Scholar 

  27. M. Xiao et al., Angew. Chem. Int. Ed 53, 9898 (2014). https://doi.org/10.1002/anie.201405334

    Article  CAS  Google Scholar 

  28. B. Nakhaee, M. Borhani Zarandi, N. Jahanbakhshi, Zadeh, Opt. Mater. 136, 113421 (2023). https://doi.org/10.1016/j.optmat.2022.113421

    Article  CAS  Google Scholar 

  29. D. Prochowicz et al., J. Mater. Chem. A 6, 14307 (2018). https://doi.org/10.1039/C8TA03782E

    Article  CAS  Google Scholar 

  30. A. Nawaz et al., J. Mater. Sci.: Mater. Electron. 28, 15630 (2017). https://doi.org/10.1007/s10854-017-7451-z

    Article  CAS  Google Scholar 

  31. H. Mao et al., J. Mater. Sci.: Mater. Electron. 30, 3511 (2019). https://doi.org/10.1007/s10854-018-00628-8

    Article  CAS  Google Scholar 

  32. B. Gogoi, A. Yerramilli, K.M. Luboowa, S.M. Shin, T. Alford, J. Mater. Sci.: Mater. Electron. 33, 4415 (2022). https://doi.org/10.1007/s10854-021-07633-4

    Article  CAS  Google Scholar 

  33. X. Liu, C. Xu, E.-C. Lee, ACS Appl. Energy Mater. 3, 12291 (2020). https://doi.org/10.1021/acsaem.0c02342

    Article  CAS  Google Scholar 

  34. A.W.P. Sanches, M.A.T. da Silva, N.J.A. Cordeiro, A. Urbano, S.A. Lourenço, Phys. Chem. Chem. Phys. 21, 5253 (2019). https://doi.org/10.1039/C8CP06916F

    Article  CAS  Google Scholar 

  35. N. Jahanbakhshi Zadeh, M. Borhani Zarandi, J. Mater. Res. 36, 4938 (2021). https://doi.org/10.1557/s43578-021-00442-9

    Article  CAS  Google Scholar 

  36. F. Yang, M.A. Kamarudin, P. Zhang, G. Kapil, T. Ma, S. Hayase, ChemSusChem 11, 2348 (2018). https://doi.org/10.1002/cssc.201800625

    Article  CAS  Google Scholar 

  37. H. Zhang et al., ACS Omega 2, 7666 (2017). https://doi.org/10.1021/acsomega.7b01026

    Article  CAS  Google Scholar 

  38. A.M. El-naggar et al., J. Mater. Res. Technol. 14, 287 (2021). https://doi.org/10.1016/j.jmrt.2021.06.035

    Article  CAS  Google Scholar 

  39. A. Listorti et al., J. Phys. Chem. Lett. 6, 1628 (2015). https://doi.org/10.1021/acs.jpclett.5b00483

    Article  CAS  Google Scholar 

  40. T. Baikie et al., J. Mater. Chem. A 1, 5628 (2013). https://doi.org/10.1039/C3TA10518K

    Article  CAS  Google Scholar 

  41. A. Purohit, S. Chander, S.P. Nehra, M.S. Dhaka, Phys. E: Low-dimensional Syst. Nanostruct. 69, 342 (2015). https://doi.org/10.1016/j.physe.2015.01.028

    Article  CAS  Google Scholar 

  42. A. Purohit, S. Chander, S.P. Nehra, C. Lal, M.S. Dhaka, Opt. Mater. 47, 345 (2015). https://doi.org/10.1016/j.optmat.2015.05.053

    Article  CAS  Google Scholar 

  43. E. Mosconi, T. Etienne, F. De Angelis, J. Phys. Chem. Lett 8, 2247 (2017). https://doi.org/10.1021/acs.jpclett.7b00328

    Article  CAS  Google Scholar 

  44. A.M. El-naggar et al, Results Phy.28, 104642 (2021). https://doi.org/10.1016/j.rinp.2021.104642

    Article  Google Scholar 

  45. D. Beysens, P. Calmettes, J. Chem. Phys. 66, 766 (1977). https://doi.org/10.1063/1.433954

    Article  CAS  Google Scholar 

  46. J. Lekner, M.C. Dorf, Appl. Opt. 27, 1278 (1988). https://doi.org/10.1364/AO.27.001278

    Article  CAS  Google Scholar 

  47. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 9, 927 (2014). https://doi.org/10.1038/nnano.2014.181

    Article  CAS  Google Scholar 

  48. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14, 2584 (2014). https://doi.org/10.1021/nl500390f

    Article  CAS  Google Scholar 

  49. B.N. Ezealigo et al., Arabian J. Chem. 13, 988 (2020). https://doi.org/10.1016/j.arabjc.2017.09.002

    Article  CAS  Google Scholar 

  50. S. Chander, M.S. Dhaka, Thin Solid Films 638, 179 (2017). https://doi.org/10.1016/j.tsf.2017.07.048

    Article  CAS  Google Scholar 

  51. Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Sol. Energy Mater. Sol. Cells 137, 253 (2015). https://doi.org/10.1016/j.solmat.2015.02.017

    Article  CAS  Google Scholar 

  52. K. Peiponen, J. Saarinen, Rep. Prog. Phys. 72, 056401 (2009). https://doi.org/10.1088/0034-4885/72/5/056401

    Article  CAS  Google Scholar 

  53. B.A. Al-Asbahi, S.M.H. Qaid, M. Hezam, I. Bedja, H.M. Ghaithan, A.S. Aldwayyan, Opt. Mater. 103, 109836 (2020). https://doi.org/10.1016/j.optmat.2020.109836

    Article  CAS  Google Scholar 

  54. S. De Wolf et al., J. Phys. Chem. Lett. 5, 1035 (2014). https://doi.org/10.1021/jz500279b

    Article  CAS  Google Scholar 

  55. F. Urbach, Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  56. M. Stutzmann, Philos. Mag. B 60, 531 (1989). https://doi.org/10.1080/13642818908205926

    Article  CAS  Google Scholar 

  57. R. Wehrspohn et al., J. Appl. Phys 87, 144 (2000). https://doi.org/10.1063/1.371836

    Article  CAS  Google Scholar 

  58. M.A. Islam et al., Nanomaterials 11, 3463 (2021). https://doi.org/10.3390/nano11123463

    Article  CAS  Google Scholar 

  59. B. Li, Y. Li, C. Zheng, D. Gao, W. Huang, RSC Adv. 6, 38079 (2016). https://doi.org/10.1039/C5RA27424A

    Article  CAS  Google Scholar 

  60. S. Cacovich et al., Nanoscale 9, 4700 (2017). https://doi.org/10.1039/C7NR00784A

    Article  CAS  Google Scholar 

Download references

 Acknowledgements

The authors gratefully acknowledge the laboratory support of the Yazd photonics research group (YPRG) of Yazd University.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BN: Conceptualization, Methodology, Investigation, Writing–original draft, reviewing, and editing. MBZ: Research supervisor, Conceptualization, reviewing, and editing. NJZ: Research supervisor, Conceptualization, Investigation, Writing–review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmood Borhani Zarandi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaee, B., Borhani Zarandi, M. & Jahanbakhshi Zadeh, N. Optical and structural engineering of CH3NH3PbI3 film via CB-antisolvent for efficient and stable perovskite solar cells. J Mater Sci: Mater Electron 34, 1094 (2023). https://doi.org/10.1007/s10854-023-10518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10518-3

Navigation