Skip to main content

Advertisement

Log in

A hydrogel triboelectric nanogenerator with self-healing function to obtain bio-mechanical energy and boxing training monitoring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The research of boxing has been paid more and more attention in today's sports field. And the research and development of relevant monitoring equipment is very important, especially wearable sports monitoring equipment. In this work, we proposed a novel hydrogel triboelectric nanogenerator (H-TENG) with self-healing function to obtain bio-mechanical energy and boxing training monitoring. The H-TENG follows the single-electrode working mode. In detail, the polydimethylsiloxane (PDMS) serve as the triboelectric layer and the ionic hydrogel play the role of conductive electrode. According to the experimental results, the Voc and Isc of the H-TENGs are 90 V, 0.72 μA, respectively. The H-TENG can be installed on the boxing glove to monitor boxing motion information to achieve the self-powered sports sensor. Our research will promote the development of self-powered sports sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. L. Ren, A triboelectric nanogenerator based on foam for human motion posture monitoring[J]. Mater. Technol. 37(9), 1–6 (2021)

    CAS  Google Scholar 

  2. J. Cai, Z. Zhang, A recyclable triboelectric nanogenerator integrated into insole for sensing human motion[J]. Mater. Technol. 37(10), 1–8 (2021)

    Google Scholar 

  3. L. Zhou, D. Liu, J. Wang et al., Triboelectric nanogenerators: fundamental physics and potential applications[J]. Friction 8(3), 481–506 (2020)

    Article  CAS  Google Scholar 

  4. P. Zhang, Z. Zhang, J. Cai, A foot pressure sensor based on triboelectric nanogenerator for human motion monitoring[J]. Microsyst. Technol. 27(9), 3507–3512 (2021)

    Article  Google Scholar 

  5. J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports[J]. Adv. Mater. 33(17), 2004178 (2021)

    Article  CAS  Google Scholar 

  6. Z.L. Wang, Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution[J]. Adv. Energy Mater. 10(17), 2000137 (2020)

    Article  CAS  Google Scholar 

  7. W. Liu, Z. Wang, G. Wang et al., Integrated charge excitation triboelectric nanogenerator[J]. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  8. Z. Zhao, L. Zhou, S. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator[J]. Nat. Commun. 12(1), 1–8 (2021)

    Google Scholar 

  9. L. Jin, X. Xiao, W. Deng et al., Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators[J]. Nano. Lett. 20(9), 6404–6411 (2020)

    Article  CAS  Google Scholar 

  10. W.G. Kim, D.W. Kim, I.W. Tcho et al., Triboelectric nanogenerator: structure, mechanism, and applications[J]. ACS Nano. 15(1), 258–287 (2021)

    Article  CAS  Google Scholar 

  11. S. Zhang, M. Bick, X. Xiao et al., Leveraging triboelectric nanogenerators for bioengineering[J]. Matter 4(3), 845–887 (2021)

    Article  CAS  Google Scholar 

  12. Y. Su, G. Chen, C. Chen et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator[J]. Adv. Mater. 33(35), 2101262 (2021)

    Article  CAS  Google Scholar 

  13. Y. Zou, J. Xu, Y. Fang et al., A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics[J]. Nano. Energy 83, 105845 (2021)

    Article  CAS  Google Scholar 

  14. H. Askari, A. Khajepour, M.B. Khamesee et al., Piezoelectric and triboelectric nanogenerators: trends and impacts[J]. Nano Today 22, 10–13 (2018)

    Article  CAS  Google Scholar 

  15. X. Xiao, G. Chen, A. Libanori et al., Wearable triboelectric nanogenerators for therapeutics[J]. Trends in Chemistry 3(4), 279–290 (2021)

    Article  CAS  Google Scholar 

  16. H. Ryu, H. Park, M.K. Kim et al., Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators[J]. Nat. Commun. 12(1), 1–9 (2021)

    Article  Google Scholar 

  17. H. Wang, L. Xu, Y. Bai et al., Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling[J]. Nat. Commun. 11(1), 1–9 (2020)

    Google Scholar 

  18. Y. Zhou, W. Deng, J. Xu et al., Engineering materials at the nanoscale for triboelectric nanogenerators[J]. Cell Reports Physical Science 1(8), 100142 (2020)

    Article  CAS  Google Scholar 

  19. Y. Wu, Y. Li, Y. Zou et al., A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring[J]. Nano Energy 92, 106715 (2022)

    Article  CAS  Google Scholar 

  20. W. He, W. Liu, J. Chen et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect[J]. Nat. Commun. 11(1), 1–8 (2020)

    Google Scholar 

  21. Y. Liu, W. Liu, Z. Wang et al., Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density[J]. Nat. Commun. 11(1), 1–8 (2020)

    CAS  Google Scholar 

  22. Y. Zou, J. Xu, K. Chen et al., Advances in nanostructures for high-performance triboelectric nanogenerators[J]. Adv Mater Technol 6(3), 2000916 (2021)

    Article  CAS  Google Scholar 

  23. Y. Song, Z. Shi, G.H. Hu et al., Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review[J]. J Mater Chem A 9(4), 1910–1937 (2021)

    Article  CAS  Google Scholar 

  24. L. Long, W. Liu, Z. Wang et al., High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting[J]. Nat. Commun. 12(1), 1–10 (2021)

    Article  Google Scholar 

  25. R. Cheng, K. Dong, L. Liu et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications[J]. ACS Nano 14(11), 15853–15863 (2020)

    Article  CAS  Google Scholar 

  26. W. Liu, Z. Wang, G. Wang et al., Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator[J]. Nat. Commun. 11(1), 1–10 (2020)

    CAS  Google Scholar 

  27. M. Li, H.W. Lu, S.W. Wang et al., Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators[J]. Nat. Commun. 13(1), 1–11 (2022)

    Google Scholar 

  28. M.T.O. Worsey, H.G. Espinosa, J.B. Shepherd et al., An evaluation of wearable inertial sensor configuration and supervised machine learning models for automatic punch classification in boxing[J]. IoT 1(2), 360–381 (2020)

    Article  Google Scholar 

  29. M. Morita, K. Watanabe, K. Kobayashi et al., Boxing punch analysis using 3D gyro sensor[C]//SICE Annual Conference. IEEE 2011, 1125–1127 (2011)

    Google Scholar 

  30. D. Kimm, D.V. Thiel, Hand speed measurements in boxing[J]. Procedia Eng. 112, 502–506 (2015)

    Article  Google Scholar 

  31. R.J.N. Helmer, A.G. Hahn, L.M. Staynes et al., Design and development of interactive textiles for impact detection and use with an automated boxing scoring system[J]. Procedia Eng. 2(2), 3065–3070 (2010)

    Article  Google Scholar 

  32. J.B. Shepherd, D.V. Thiel, H.G. Espinosa, Evaluating the use of inertial-magnetic sensors to assess fatigue in boxing during intensive training[J]. IEEE Sens Lett 1(2), 1–4 (2017)

    Article  Google Scholar 

  33. G. Li, L. Li, P. Zhang et al., Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing[J]. RSC Adv. 11(28), 17437–17444 (2021)

    Article  CAS  Google Scholar 

  34. Y.H. Jia, P. Gong, S.L. Li et al., Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A 384(4), 126106 (2020)

    Article  CAS  Google Scholar 

  35. Y.Y. Yang, P. Gong, W.D. Ma et al., Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. B 30(6), 067803 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Project of Philosophy and Social Science Fund of Hunan Province (21YBQ076).

Funding

Humanities and Social Sciences in Colleges, SK2021-28, Jingyuan Yang

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JY and HW; methodology, JY; validation, HW; formal analysis, JY and HW; investigation, JY and HW; resources, JY and HW; data curation, JY and HW; writing—original draft preparation, JY; writing—review and editing, HW; visualization, JY; funding acquisition, JY and HW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Huiling Wang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 834 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, H. A hydrogel triboelectric nanogenerator with self-healing function to obtain bio-mechanical energy and boxing training monitoring. J Mater Sci: Mater Electron 34, 1124 (2023). https://doi.org/10.1007/s10854-023-10469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10469-9

Navigation