Skip to main content
Log in

Investigating the edge effects of Cu electroplating on the SAMs-coated Si substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Self-assembled monolayers (SAMs) are used to pattern the surface for metal deposition to study its effect on Cu deposition. Here, Cu electrodeposition was studied under diffusion and kinetic control regimes on an octadecyltrichlorosilane SAMs-coated (OTS SAMs) patterned Si/Cu substrate. First, the SAM-modified surfaces of the Si substrates were confirmed by contact angle and infrared spectroscopy. Cyclic voltammetry and electrochemical impedance spectroscopy show that the OTS SAMs hindered ion migration to the Cu and Si substrates and charge transfer on the Si surface. Constant voltage electrodeposition of Cu was performed on the patterned Si/Cu substrate. Under kinetic control conditions, the edge effect was reflected in the edge lump Cu growth with higher current density, and the edge Cu growth could be suppressed by OTS SAMs. Under diffusion control conditions, due to the defects and desorption of SAMs, the growth of Cu at the edge is rough with large dendrites formed. The formation of Cu dendrites may be resulted by a nonuniform high-impedance suppression layer. The edge effects can be optimized by the overpotential condition and the Cu concentration which could further improve the aspect ratio of Cu metallization for Si solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data are available upon request.

References

  1. S. Casalini, C.A. Bortolotti, F. Leonardi, F. Biscarini, Chem. Soc. Rev. 46, 40 (2017)

    Article  CAS  Google Scholar 

  2. M. Li, K. Xie, G. Wang, J. Zheng, Y. Cao, F. Wei, H. Tu, J. Tang, Langmuir 37, 5916 (2021)

    Article  CAS  Google Scholar 

  3. R. Yi, Y. Mao, Y. Shen, L. Chen, J. Am. Chem. Soc. 143, 12897 (2021)

    Article  CAS  Google Scholar 

  4. G.A.L. Andreatta, A. Lachowicz, N. Blondiaux, C. Allebé, A. Faes, Thin Solid Films 691, 137624 (2019)

    Article  CAS  Google Scholar 

  5. J. Gay, A. Lachowicz, N. Blondiaux, G.A.L. Andreatta, ACS Appl Nano Mater. 5, 15954 (2022)

    Article  CAS  Google Scholar 

  6. O. Azzaroni, P.L. Schilardi, R.C. Salvarezza, Electrochim. Acta 48, 3107 (2003)

    Article  CAS  Google Scholar 

  7. J. Shim, J. Lee, B. Yoo, Arch. Metall. Mater. 66, 741 (2021)

    CAS  Google Scholar 

  8. N.S. Pesika, A. Radisic, K.J. Stebe, P.C. Searson, Nano Lett. 6, 1023 (2006)

    Article  CAS  Google Scholar 

  9. Z. She, A. Di Falco, G. Hähner, M. Buck, Appl. Surf. Sci. 373, 51 (2016)

    Article  CAS  Google Scholar 

  10. B. O’Brien, K.J. Stebe, P.C. Searson, J. Phys. Chem. C 111, 8686 (2007)

    Article  Google Scholar 

  11. P.L. Schilardi, P. Dip, P.C. dos Santos Claro, G.A. Benítez, M.H. Fonticelli, O. Azzaroni, R.C. Salvarezza, Chem. Eur. J. 12, 38 (2006)

    Article  CAS  Google Scholar 

  12. Z. She, A. DiFalco, G. Hähner, M. Buck, Beilstein J. Nanotechnol. 3, 101 (2012)

    Article  Google Scholar 

  13. N.S. Pesika, F. Fan, P.C. Searson, K.J. Stebe, J. Am. Chem. Soc. 127, 11960 (2005)

    Article  CAS  Google Scholar 

  14. M. Donten, M.L. Donten, Z. Stojek, K. Wikiel, J. Solid State Electrochem. 10, 288 (2006)

    Article  CAS  Google Scholar 

  15. C.B. Gorman, H.A. Biebuyck, G.M. Whitesides, Chem. Mater. 7, 526 (1995)

    Article  CAS  Google Scholar 

  16. J. Nelson, D. Schwartz, Langmuir 23, 9661 (2007)

    Article  CAS  Google Scholar 

  17. T. Hatt, J. Bartsch, V. Davis, A. Richter, S. Kluska, S.W. Glunz, M. Glatthaar, A. Fischer, ACS Appl Mater. Interfaces 13, 5803 (2021)

    Article  CAS  Google Scholar 

  18. S.H. Lee, A. Rehman, E.G. Shin, D.W. Lee, J. Opt. Soc. Korea 19, 217 (2015)

    Article  CAS  Google Scholar 

  19. D.Y. Shin, S.S. Yoo, H. Song, H. Tak, D. Byun, Sci. Rep. 5, 16704 (2015)

    Article  CAS  Google Scholar 

  20. S.A. Kislenko, V.A. Nikitina, R.R. Nazmutdinov, Phys. Chem. Chem. Phys. 17, 31947 (2015)

    Article  CAS  Google Scholar 

  21. S.A. Kislenko, V.A. Nikitina, R.R. Nazmutdinov, High Energy Chem. 49, 341 (2015)

    Article  CAS  Google Scholar 

  22. J. Sagiv, J. Am. Chem. Soc. 102, 92 (1980)

    Article  CAS  Google Scholar 

  23. S. Asakura, M. Hirota, A. Fuwa, J. Vac. Sci. Technol. Vacuum Surf Film 21, 1152 (2003)

    Article  CAS  Google Scholar 

  24. N. Herzer, S. Hoeppener, U.S. Schubert, Chem. Commun. 46, 5634 (2010)

    Article  CAS  Google Scholar 

  25. F. Deflorian, S. Rossi, L. Fedrizzi, Electrochim. Acta 51, 6097 (2006)

    Article  CAS  Google Scholar 

  26. F. Zucchi, V. Grassi, A. Frignani, G. Trabanelli, Corros. Sci. 46, 2853 (2004)

    Article  CAS  Google Scholar 

  27. Z. Zhu, G. Xu, Y. An, C. He, Coll. Surf. Physicochem. Eng. Asp. 457, 408 (2014)

    Article  CAS  Google Scholar 

  28. S.B. Ulapane, N.J.B. Kamathewatta, H.M. Ashberry, C.L. Berrie, ACS Appl Nano Mater. 2, 7114 (2019)

    Article  CAS  Google Scholar 

  29. S. Hsieh, W.J. Chao, P.Y. Lin, C.W. Hsieh, Corros. Sci. 80, 427 (2014)

    Article  CAS  Google Scholar 

  30. Y. Wang, M. Lieberman, Langmuir 19, 1159 (2003)

    Article  CAS  Google Scholar 

  31. Y.C. Kao, F.C.N. Hong, Surf. Coatings Technol. 231, 460 (2013)

    Article  CAS  Google Scholar 

  32. Z. Li, R.H. Yoon, J. Coll. Interface Sci. 392, 369 (2013)

    Article  CAS  Google Scholar 

  33. S.A. Kulkarni, S.A. Mirji, A.B. Mandale, R.P. Gupta, K.P. Vijayamohanan, Mater. Lett. 59, 3890 (2005)

    Article  CAS  Google Scholar 

  34. M.D. Porter, T.B. Bright, D.L. Allara, C.E. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987)

    Article  CAS  Google Scholar 

  35. C.P. Tripp, M.L. Hair, Langmuir 8, 1120 (1992)

    Article  CAS  Google Scholar 

  36. T.Y. Toshinari Yamazaki, Y.Y. Yasuyuki Yoshino, T.Y. Toshio Yoshizawa, T.Y. Tatsuo Yamabuchi, K.T. Kiyoshi Terayama, T.S. Toshiharu Shimazaki, T. Mizuguchi, Jpn. J. Appl. Phys. 35, 4755 (1996)

    Article  Google Scholar 

  37. C. Lupo, D. Schlettwein, J. Electrochem. Soc. 166, D3182 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61664009).

Author information

Authors and Affiliations

Authors

Contributions

XL was involved in methodology, investigation, data analysis, writing of the original draft, and discussion. SZ worked on data analysis and discussion. ZL conceived the idea and drafted, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhu Liu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zhang, S. & Liu, Z. Investigating the edge effects of Cu electroplating on the SAMs-coated Si substrate. J Mater Sci: Mater Electron 34, 1047 (2023). https://doi.org/10.1007/s10854-023-10461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10461-3

Navigation