Skip to main content
Log in

Preparation and electrochemical properties of mesoporous α-Fe2O3 nanowires for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous α-Fe2O3 nanowires have been prepared through solid-state thermal conversion of ferrous oxalate dihydrate precursor for supercapacitor application. The possible growth mechanism of the FeC2O4·2H2O nanowires was proposed based on a series of time-dependent experiments. The specific surface area and pore size distribution of the mesoporous α-Fe2O3 nanowires were calculated to be about 70.6 m2 g−1 and 2.5 nm, respectively. Furthermore, electrochemical measurements demonstrate that the as-prepared mesoporous α-Fe2O3 nanowire electrode delivers a high specific capacitance up to 267.5 F g−1 at 2 A g−1 and good cycle performance (87% capacitance retention under 2000 cycles). The excellent supercapacitor performance of the α-Fe2O3 nanowires can be ascribed mainly to the unique mesoporous structure with large specific surface area, which provide fast electron/ion transfer path as well as large reaction surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.F. EL-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012). https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  2. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/C4EE03229B

    Article  CAS  Google Scholar 

  3. X. Ren, M.G. Li, L.Y. Qiu, X. Guo, F.Y. Tian, G.H. Han, W.W. Yang, Y.S. Yu, Cationic vacancies and interface engineering on crystalline–amorphous gamma-phase Ni–Co oxyhydroxides achieve ultrahigh mass/areal/volumetric energy density flexible all-solid-state asymmetric supercapacitor. J. Mater. Chem. A 11, 5754–5765 (2023). https://doi.org/10.1039/d2ta09035j

    Article  CAS  Google Scholar 

  4. X. Guo, M.G. Li, L.Y. Qiu, F.Y. Tian, L. He, S. Geng, Y.Q. Liu, Y. Song, W.W. Yang, Y.S. Yu, Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting. Chem. Eng. J. 453, 139796 (2023). https://doi.org/10.1016/j.cej.2022.139796

    Article  CAS  Google Scholar 

  5. M.Y. Gao, F.Y. Tian, Z. Guo, X. Zhang, Z.J. Li, J. Zhou, X. Zhou, Y.S. Yu, W.W. Yang, Mutual-modification effect in adjacent pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 446, 137127 (2022). https://doi.org/10.1016/j.cej.2022.137127

    Article  CAS  Google Scholar 

  6. X. Zhang, M.Y. Gao, L.Y. Qiu, J. Sheng, W.W. Yang, Y.S. Yu, Sulfur vacancies-induced ‘‘Electron Bridge” in Ni4Mo/Sv–ZnxCd1−xS regulates electron transfer for efficient H2-releasing photocatalysis. J. Energy Chem. 79, 64–71 (2023). https://doi.org/10.1016/j.jechem.2023.01.001

    Article  CAS  Google Scholar 

  7. X. Zhang, C.X. Zhu, L.Y. Qiu, M.Y. Gao, F.Y. Tian, Y.Q. Liu, W.W. Yang, Y.S. Yu, Concentrating photoelectrons on sulfur sites of ZnxCd1–xS to active H–OH bond of absorbed water boosts photocatalytic hydrogen generation. Surf. Interfaces 34, 102312 (2022). https://doi.org/10.1016/j.surfin.2022.102312

    Article  CAS  Google Scholar 

  8. G.R. Li, H. Xu, X.F. Lu, J.X. Feng, Y.X. Tong, C.Y. Su, Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5(10), 4056–4069 (2013). https://doi.org/10.1039/C3NR00607G

    Article  CAS  Google Scholar 

  9. J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Hang, D. Chen, G. Shen, Flexible asymmetric supercapacitors based upon Co9S8 nanorod Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7(6), 5453–5462 (2013). https://doi.org/10.1021/nn401450s

    Article  CAS  Google Scholar 

  10. H. Wang, H. Yi, X. Chen, X. Wang, One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J. Mater. Chem. A 2(4), 1165–1173 (2014). https://doi.org/10.1039/C3TA13932H

    Article  CAS  Google Scholar 

  11. Y. Li, J. Xu, T. Feng, Q.F. Yao, J.P. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27(14), 1606728 (2017). https://doi.org/10.1002/adfm.201606728

    Article  CAS  Google Scholar 

  12. L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8(14), 9335–9344 (2016). https://doi.org/10.1021/acsami.6b00225

    Article  CAS  Google Scholar 

  13. Z. Wang, C.J. Liu, Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11, 277–293 (2015). https://doi.org/10.1016/j.nanoen.2014.10.022

    Article  CAS  Google Scholar 

  14. D. Sarkar, G.G. Khan, A.K. Singh, K. Mandal, High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core-shell nanowire heterostructure arrays. J. Phys. Chem. C 117(30), 15523–15531 (2013). https://doi.org/10.1021/jp4039573

    Article  CAS  Google Scholar 

  15. P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, Z. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloys Compd. 604, 87–93 (2014). https://doi.org/10.1021/j.jallcom.2014.03.106

    Article  CAS  Google Scholar 

  16. Z. Ma, X. Huang, S. Dou, J. Wu, S. Wang, One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 118(31), 17231–17239 (2014). https://doi.org/10.1021/jp502226j

    Article  CAS  Google Scholar 

  17. L. Xu, J. Xia, H. Xu, S. Yin, K. Wang, L. Huang, L. Wang, H. Li, Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance. J. Power Sources 245, 866–874 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.014

    Article  CAS  Google Scholar 

  18. Q.X. Low, G.W. Ho, Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano Energy 5, 28–35 (2014). https://doi.org/10.1016/j.nanoen.2014.01.002

    Article  CAS  Google Scholar 

  19. D. Dollimore, D.L. Griffiths, D. Nicholson, The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J. Chem. Soc. 488, 2617–2623 (1963). https://doi.org/10.1016/j.nanoen.2014.01.002

    Article  CAS  Google Scholar 

  20. E.D. Macklen, Influence of atmosphere on the thermal decomposition of ferrous oxalate dehydrate. J. Inorg. Nucl. Chem. 29, 1229–1234 (1967). https://doi.org/10.1016/0022-1902(67)80362-2

    Article  CAS  Google Scholar 

  21. Y.M. Zhao, Y.H. Li, R.Z. Ma, M.J. Roe, D.G. McCartney, Y.Q. Zhu, Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small 2(3), 422–427 (2006). https://doi.org/10.1002/smll.200500347

    Article  CAS  Google Scholar 

  22. H.L. Du, J.Z. Wang, B. Wang, D.Q. Cang, Preparation of cobalt oxalate powders with the presence of a pulsed electromagnetic field. Powder Technol. 199(2), 149–153 (2010). https://doi.org/10.1016/j.powtec.2009.12.015

    Article  CAS  Google Scholar 

  23. N. Du, Y.F. Xu, H. Zhang, C.X. Zhai, D.R. Yang, Selective synthesis of Fe2O3 and Fe3O4 nanowires via a single precursor: a general method for metal oxide nanowires. Nanoscale Res. Lett. 5(8), 1295–1300 (2010). https://doi.org/10.1007/s11671-010-9641-y

    Article  CAS  Google Scholar 

  24. C.E. Houseroft, Inorganic Chemistry (Pearson Education; Edinburgh Gate, London, 2005)

    Google Scholar 

  25. X.L. Li, J.F. Liu, Y.D. Li, Low-temperature conversion synthesis of M(OH)2 (M=Ni, Co, Fe) nanoflakes and nanorods. Mater. Chem. Phys. 80(1), 222–227 (2003). https://doi.org/10.1016/S0254-0584(02)00488-1

    Article  CAS  Google Scholar 

  26. Y.D. Li, H.W. Liao, Y. Ding, Y. Fan, Y. Zhang, Y.T. Qian, Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod. Inorg. Chem. 38(7), 1382–1387 (1999). https://doi.org/10.1021/ic980878f

    Article  CAS  Google Scholar 

  27. P.H. Zhao, W.L. Li, G. Wang, B.Z. Yu, X.J. Li, J.T. Bai, Z.Y. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloy Compd. 604, 87–93 (2014). https://doi.org/10.1016/j.jallcom.2014.03.106

    Article  CAS  Google Scholar 

  28. J. Zhao, Z.J. Li, X.C. Yuan, Z. Yang, M. Zhang, A. Meng, Q.D. Li, A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on SiC nanowire networks as free-standing advanced electrodes. Adv. Energy Mater. 8, 1702787 (2018). https://doi.org/10.1002/aenm.201702787

    Article  CAS  Google Scholar 

  29. Q. Tang, W. Wang, G. Wang, The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J. Mater. Chem. A 3(12), 6662–6670 (2015). https://doi.org/10.1039/CSTA00328H

    Article  CAS  Google Scholar 

  30. X.J. Yang, H.M. Sun, L.S. Zhang, L.J. Zhao, J.S. Lian, Q. Jiang, High efficient photo-fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci. Rep. 6, 31591 (2016). https://doi.org/10.1038/srep31591

    Article  CAS  Google Scholar 

  31. J.C. Huang, S.N. Yang, Y. Xu, X.B. Zhou, X. Jiang, N.N. Shi, D.X. Cao, J.L. Yin, G.L. Wang, Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. J. Electroanal. Chem. 713, 98–102 (2014). https://doi.org/10.1016/j.jelechem.2013.12.009

    Article  CAS  Google Scholar 

  32. Y.D. Dong, L. Xing, F. Hu, A. Umar, X. Wu, α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Mater. Res. Bull. 107, 391–396 (2018). https://doi.org/10.1016/j.materresbull.2018.07.038

    Article  CAS  Google Scholar 

  33. S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Self-assembled α-Fe2O3 mesocrystals-graphene nanohybrid for enhanced electrochemical capacitors. Small 10(11), 2270–2279 (2014). https://doi.org/10.1002/smll.201303922

    Article  CAS  Google Scholar 

  34. K. Deori, S.K. Ujjain, R.K. Sharma, S. Deka, Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl. Mater. Interfaces 5(21), 10665–10672 (2013). https://doi.org/10.1021/am4027482

    Article  CAS  Google Scholar 

  35. Y. Wang, M.M. Zhang, D.H. Pan, Y. Li, T.J. Ma, J.M. Xie, Nitrogen/sulfur co-doped grapheme networks uniformly coupled N-Fe2O3 nanoparticles achieving enhanced supercapacitor. Electrochim. Acta 266, 242–253 (2018). https://doi.org/10.1016/j.electacta.2018.02.040

    Article  CAS  Google Scholar 

  36. C.L. Long, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano 7(12), 11325–11332 (2013). https://doi.org/10.1021/nn405192s

    Article  CAS  Google Scholar 

  37. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application. J. Power Sources 188(1), 338–342 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.136

    Article  CAS  Google Scholar 

  38. N.K. Chaudhari, Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. ChemSusChem 7(11), 3102–3111 (2014). https://doi.org/10.1002/cssc.201402526

    Article  CAS  Google Scholar 

  39. B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Curr. Appl. Phys. 13(6), 985–989 (2013). https://doi.org/10.1016/j.cap.2013.01.047

    Article  Google Scholar 

  40. K.Y. Xie, J. Li, Y.Q. Lai, W. Lu, Z. Zhang, Y.X. Liu, L.M. Zhou, H.T. Huang, Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem. Commun. 13(6), 657–660 (2011). https://doi.org/10.1016/j.elecom.2011.03.040

    Article  CAS  Google Scholar 

  41. K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok, K.P. Loh, W.S. Chin, Sow, α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9), 2958–2961 (2012). https://doi.org/10.1039/C2NR11902A

    Article  CAS  Google Scholar 

  42. S. Sun, J. Lang, R. Wang, L. Kong, X. Li, X. Yan, Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors. J. Mater. Chem. A 2(35), 14550–14556 (2014). https://doi.org/10.1039/C4TA02026J

    Article  CAS  Google Scholar 

  43. P.M. Padwal, S.L. Kadam, S.M. Mane, S.B. Kulkarni, Enhanced specific capacitance and supercapacitive properties of polyaniline–iron oxide (PANI–Fe2O3) composite electrode material. J. Mater. Sci. 51(23), 10499–10505 (2016). https://doi.org/10.1007/s10853-016-0270-4

    Article  CAS  Google Scholar 

  44. X. Zheng, X.Q. Yan, Y.H. Sun, Y.S. Yu, G.J. Zhang, Y.W. Shen, Q.J. Liang, Q.L. Liao, Y. Zhang, Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J. Colloid Interface Sci. 466, 291–296 (2016). https://doi.org/10.1016/j.jcis.2015.12.024

    Article  CAS  Google Scholar 

  45. S. Lee, H. Kim, H.M. Jung, Interfacial generation of plates assembled with α-Fe2O3 nano-flakes for electrochemical capacitors. J. Electroanal. Chem. 770, 44–49 (2016). https://doi.org/10.1016/j.jelechem.2016.03.035

    Article  CAS  Google Scholar 

  46. L.C. Yue, S.G. Zhang, H.Q. Zhao, M. Wang, D.F. Wang, J. Mi, Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials. J. Alloy Compd. 765, 1263–1266 (2018). https://doi.org/10.1016/j.jallcom.2018.06.283

    Article  CAS  Google Scholar 

  47. M.Y. Zhu, J.R. Kan, J.M. Pan, W.J. Tong, Q. Chen, J.C. Wang, One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage. J. Energy Chem. 28, 1–8 (2019). https://doi.org/10.1016/j.jechem.2017.09.021

    Article  Google Scholar 

  48. S. Shivakumara, T.R. Penki, N. Munichandraiah, Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J. Solid State Electrochem. 18(4), 1057–1066 (2014). https://doi.org/10.1007/s10008-013-2355-1

    Article  CAS  Google Scholar 

  49. S. Shivakumara, T.R. Penki, N. Munichandraiah, Synthesis and characterization of porous flowerlike α-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem. Lett. 2(7), A60–A62 (2013). https://doi.org/10.1149/2.002307eel

    Article  CAS  Google Scholar 

  50. B.P. Prasanna, D.N. Avadhani, M.S. Raghu, K.K. Yogesh, Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications. Mater. Today Commun. 12, 782–787 (2017). https://doi.org/10.1016/j.mtcomm.2017.07.002

    Article  CAS  Google Scholar 

  51. D. Wang, Q. Wang, T. Wang, Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology 22(13), 135604 (2011). https://doi.org/10.1088/0957-4484/22/13/135604

    Article  CAS  Google Scholar 

  52. T.Z. Shi, Y.L. Feng, T. Peng, B.G. Yuan, Sea urchin-shaped Fe2O3 coupled with 2D MXene nanosheets as negative electrode for high-performance asymmetric supercapacitors. Electrochim. Acta 381, 138245 (2021). https://doi.org/10.1016/j.electacta.2021.138245

    Article  CAS  Google Scholar 

  53. S.B. Tian, B.L. Zhang, D. Han, Z.Q. Gong, X.Y. Li, Fe2O3/porous carbon composite derived from oily sludge waste as an advanced anode material for supercapacitor application. Nanomaterials 12, 3819 (2022). https://doi.org/10.3390/nano12213819

    Article  CAS  Google Scholar 

  54. Z.Y. Yu, X.Y. Zhang, L. Wei, X. Guo, MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Appl. Surf. Sci. 463, 616–625 (2019). https://doi.org/10.1016/j.apsusc.2018.08.262

    Article  CAS  Google Scholar 

  55. H.Y. Quan, B.C. Cheng, Y.H. Xiao, S.J. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016). https://doi.org/10.1016/j.CEJ.2015.10.068

    Article  CAS  Google Scholar 

  56. S.W. Zahng, B.S. Yin, Z.B. Wang, F. Peter, Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem. Eng. J. 306, 193–203 (2016). https://doi.org/10.1016/j.cej.2016.07.057

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. HZ2021013, KJQN202001341, KJQN202001304, and KJZD-K202001305) and the Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0670 and cstc2020jcyj-msxmX0103).

Author information

Authors and Affiliations

Authors

Contributions

HW participated in the investigation, data curation, and writing of the original draft, YL participated in the conceptualization, writing, reviewing, & editing of the manuscript, and supervision. WX participated in the investigation. LT participated in the methodology. JS participated in the validation.

Corresponding author

Correspondence to Yuan Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, Y., Xiao, W. et al. Preparation and electrochemical properties of mesoporous α-Fe2O3 nanowires for supercapacitor application. J Mater Sci: Mater Electron 34, 1098 (2023). https://doi.org/10.1007/s10854-023-10456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10456-0

Navigation