Skip to main content
Log in

Impact of Er addition on the electrical, optical, and transmittance characteristics of 0.91KNN–0.09SMT ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Er-doped 0.91(K0.5Na0.5)NbO3–0.09Sr(Mg0.5Ta0.5)O3 transparent fluorescent ceramics were prepared according to the traditional solid-phase method. The (K0.5Na0.5)NbO3 (KNN) ceramics were modified by introducing the second group elements Sr(Mg0.5Ta0.5)O3 and the rare-earth ions Er3+. Transparent ceramics' structural, optical, and electrical characteristics as a result of the effects of Er3+, investigations were done using 0.91KNN–0.09SMT: y wt% Er. Results show that the representative 0.91KNN–0.09SMT: 0.1 wt% Er ceramics sample has a light transmittance of 60% in the near infrared (1000 nm) band, and the optical band gap (Eg) is found to be 2.62 eV. Phase structure analysis has revealed that the doping of Er3+ does not alter the structure of the ceramic's pseudo-cube phase. Er-doped KNN-SMT ceramics exhibit better up-conversion luminescence properties and also retain electrical properties. The Er3+ makes the doped ceramics have luminescence properties upconverting. With the increase of doping amount, the luminescence intensity of ceramics increases gradually at first and then decreases. Moreover, the ceramic also has some features for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The available in the article are true and valid which are recognized by all authors.

References

  1. L.W. Wang, H.N. Liu, C.J. Yu, K.S. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, High-transmittance (K0.5Na0.5)NbO3 ferroelectric ceramics modified by Sr(Bi0.5Ta0.5)O3. J. Electron. Mater. 52, 1050–1056 (2023)

    Article  CAS  Google Scholar 

  2. S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong, Transparent ceramics: processing, materials and applications. Prog. Solid State Chem. 41, 20–54 (2013)

    Article  Google Scholar 

  3. H.T. Wu, G.B. Hu, S.Y. Shi, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, S.J. Zhou, Effect of Ho addition on the optical and electrical properties of 0.98KNN–0.02SYT ceramics. J. Electron. Mater. 51, 831–837 (2022)

    Article  CAS  Google Scholar 

  4. H. Shahbazi, M. Tataei, M.H. Enayati, A. Shafeiey, M. Azizi, Structure-transmittance relationship in transparent ceramics. J. Alloys Compd. 785, 260 (2019)

    Article  CAS  Google Scholar 

  5. S.D. Zhang, F.X. Sun, X.L. Xia, C. Sun, L.M. Ruan, Multi-layer-combination method to retrieve high-temperature spectral properties of C-plane sapphire. J. Heat Mass Tran. 121, 1011–1020 (2018)

    Article  CAS  Google Scholar 

  6. A. Ikesue, Y.L. Aung, T. Kamimura, S. Honda, Y. Iwamoto, Composite laser ceramics by advanced bonding technology. Materials. 11, 271 (2018)

    Article  Google Scholar 

  7. W.B. Liu, J. Li, B.X. Jiang, D. Zhang, Y.B. Pan, 2.44 KW laser output of Nd: YAG ceramic slab fabricated by a solid-state reactive sintering. J. Alloys Compd. 538, 258–261 (2012)

    Article  CAS  Google Scholar 

  8. H.T. Wu, S.Y. Shi, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, S.J. Zhou, The Ba(Bi0.5Ta0.5)O3 modified (K0.5Na0.5)NbO3 lead-free transparent ferroelectric ceramics with high transmittance and excellent energy storage performance. J. Mater. Sci. Mater. Electron. 33, 16045–16055 (2022)

    Article  CAS  Google Scholar 

  9. Z.H. Xiao, S.J. Yu, Y.M. Li, S.C. Ruan, L.B. Kong, Q. Huang, Z.R. Huang, K. Zhou, H.B. Su, Z.J. Yao, W.X. Que, Y. Liu, T.S. Zhang, J. Wang, P. Liu, D.Y. Shen, A. Mathieu, J. Zhang, D.Y. Tang, Materials development and potential applications of transparent ceramics: A review. Mater. Sci. Eng. R Rep. 139, 100518 (2020)

    Article  Google Scholar 

  10. L.Q. Xu, F. Chen, F. Jin, D. Lan, L.L. Qu, K.X. Zhang, Z.X. Zhang, G.Y. Gao, H.L. Huang, T. Li, F.P. Zhang, K. Wang, Z. Zhou, W.B. Wu, Tuning electrical properties and phase transitions through strain engineering in lead-free ferroelectric K0.5Na0.5NbO3-LiTaO3-CaZrO3 thin films. Appl. Phys. Lett. 115, 202901 (2019)

    Article  Google Scholar 

  11. M. Zhang, H.B. Yang, D. Li, Y. Lin, Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency. J. Alloys Compd. 829, 154565 (2020)

    Article  CAS  Google Scholar 

  12. A. Presas, Y.Y. Luo, Z.W. Wang, D. Valentin, M. Egusquiza, A review of PZT patches applications in submerged systems. Sensors. 18, 2251 (2018)

    Article  Google Scholar 

  13. Z.W. Xu, X. Zeng, Z.D. Cao, L. Ling, P.S. Qiu, X.Y. He, The electrical and optical properties of Nb-doping PLZT (9/65/35) transparent ceramics. J. Electroceram. 44, 215–222 (2020)

    Article  CAS  Google Scholar 

  14. J.F. Lin, J.W. Zhai, X. Wu, B. Shen, H.H. Ye, H.J. Wang, Simultaneously improved transparency, photochromic contrast and Curie temperature via rare-earth ion modification in KNN-based ceramics. Inorg. Chem. Front. 8, 2027 (2021)

    Article  CAS  Google Scholar 

  15. J.G. Wu, Perovskite lead-free piezoelectric ceramics. J Appl Phys. 127, 190901 (2020)

    Article  CAS  Google Scholar 

  16. S.Y. Shi, G.B. Hu, M.C. Wang, H.T. Wu, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, Introduction of Sr(In0.5Ta0.5)O3 to modulate phase structure and optoelectronic properties of (K0.5Na0.5)NbO3 ceramics. J. Electron. Mater. 51, 6913–6920 (2022)

    Article  CAS  Google Scholar 

  17. G.B. Hu, H.N. Liu, J.T. Wang, Y.B. Sun, H. Wang, J.W. Xu, L. Yang, C.R. Zhou, Regulating the structural, transmittance, ferroelectric, and energy storage properties of K0.5Na0.5NbO3 ceramics using Sr(Yb0.5Nb0.5)O3. J. Electron. Mater. 50, 968–977 (2021)

    Article  CAS  Google Scholar 

  18. Y.F. Chang, Z.P. Yang, Y.T. Hou, Z.H. Liu, Z.L. Wang, Effects of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett. 90, 232905 (2007)

    Article  Google Scholar 

  19. M. Ichiki, L. Zhang, M. Tanaka, R. Maeda, Electrical properties of piezoelectric sodium-potassium niobate. J. Eur. Ceram. Soc. 24, 1693–1697 (2004)

    Article  CAS  Google Scholar 

  20. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  21. J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Dam-Janovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  22. Y.B. Sun, H. Wang, G.B. Liu, H. Xie, C.R. Zhou, G.H. Chen, C.L. Yuan, J.W. Xu, High energy storage efficiency and high electrostrictive coefficients in BNT-BS-xBT ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 31, 5546–5553 (2020)

    Article  CAS  Google Scholar 

  23. J.T. Wang, Y.B. Sun, S.Y. Shi, H. Wang, J.W. Xu, L. Yang, W. Qiu, Effects of Er3+ doping on the structure and electro-optical properties of 0.94(K0.5Na0.5)NbO3-0.06Sr(Zn1/3Nb2/3)O3 ceramics. Bull. Mater. Sci. 45, 14 (2022)

    Article  CAS  Google Scholar 

  24. H. Wang, X.Y. Zhao, J.W. Xu, X. Zhai, L. Yang, Structure and properties of (1-x)[(K0.5Na0.5)NbO3-LiSbO3]-xBiFe0.8Co0.2O3 lead-free piezoelectric ceramics. Bull. Mater. Sci. 39, 743–747 (2016)

    Article  CAS  Google Scholar 

  25. B.Y. Qu, H.L. Du, Z.T. Yang, Q.H. Liu, Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. J. Am. Ceram. Soc. 100, 1517–1526 (2017)

    Article  CAS  Google Scholar 

  26. G.B. Hu, J.T. Wang, X. Liu, H.N. Liu, H. Wang, J.W. Xu, L. Yang, C.R. Zhou, W. Qiu, Structural, transmittance, ferroelectric, energy storage, and electrical properties of K0.5Na0.5NbO3 ceramics regulated by Sr(Yb0.5Ta0.5)O3. J. Mater. Sci. Mater. Electron. 32, 22300–22308 (2021)

    Article  CAS  Google Scholar 

  27. I. Blazquez-Alcover, G. Rousse, D. AlvesDallaCorte, J.C. Badot, A. Grimaud, P. Rozier, J.M. Tarascon, Improving ionic conductivity by Mg-doping of A2SnO3 (A=Li+, Na+). Solid State Ion. 308, 16–21 (2017)

    Article  CAS  Google Scholar 

  28. S. Arif, N. Bano, M. Riaz, M.S. Anwar, Effect of magnesium substitution on structural and dielectric properties of 46.1SiO2-26.9CaO-24.4Na2O-2.6P2O5 ceramic. Mater. Chem. Phys. 281, 125873 (2022)

    Article  CAS  Google Scholar 

  29. D.H. Zhang, Y.L. Zhang, S.H. Yang, Microstructure and electrical properties of tantalum doped (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. J. Mater. Sci. Mater. Electron. 26, 909–915 (2015)

    Article  CAS  Google Scholar 

  30. J.F. Lin, Q.L. Lu, X. Wu, H.L. Sun, C. Lin, T.F. Lin, K.-H. Xue, X.S. Miao, B.S. Sa, Z.M. Sun, In situ boost and reversible modulation of dual-mode photoluminescence under an electric field in a tape-casting-based Er-doped K0.5Na0.5NbO3 laminar ceramic. J. Mater. Chem. C. 7, 7885–7892 (2019)

    Article  CAS  Google Scholar 

  31. Y. Lv, Y.H. Jin, C.L. Wang, L. Chen, G.F. Ju, Y.H. Hu, Sr3YLi(PO4)3F: Eu2+, Ln3+: colorless-magenta photochromism and coloration degree regulation through Ln3+ co-doping. RSC Adv. 7, 43700–43707 (2017)

    Article  CAS  Google Scholar 

  32. Y. Zhou, P. Wang, J.F. Lin, Q.L. Lu, X. Wu, M. Gao, T.F. Lin, C. Lin, X.H. Zheng, High-contrast photochromic Eu-doped K0.5Na0.5NbO3 ceramics with prominent Pellucidity. Dalton Trans. 50, 4914–4922 (2021)

    Article  CAS  Google Scholar 

  33. Y.B. Sun, H. Wang, C.R. Zhou, L. Yang, J.W. Xu, Enhancement of the up-conversion luminescence performance of Ho3+-doped 0.825K0.5Na0.5NbO3-0.175Sr (Yb0.5Nb0.5)O3 transparent ceramics by polarization. Bull. Mater. Sci. 44, 139 (2021)

    Article  CAS  Google Scholar 

  34. J. Zhou, Q. Liu, W. Feng, Y. Sun, F.Y. Li, Up-conversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015)

    Article  CAS  Google Scholar 

  35. Y.T. Zhong, H.J. Dai, A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020)

    Article  CAS  Google Scholar 

  36. Z.B. Li, J.X. Yang, M. Shi, L. Yang, Y.P. Cheng, X.W. Hu, X.F. Jiang, X.B. Xing, S.L. He, Upconversion luminescence of graphene oxide through hybrid waveguide. J. Phys. Chem. C. 122(29), 16866–16871 (2018)

    Article  CAS  Google Scholar 

  37. X. Liu, G.B. Hu, H.T. Wu, S.Y. Shi, H. Wang, J.W. Xu, L. Yang, W. Qiu, Transmittance, photoluminescence and electrical properties in Er-DOPED 0.98K0.5Na0.5NbO3-0.02Sr(Yb0.5Ta0.5)O3 ferroelectric ceramics. Ceram. J. Electron. Mater. 51, 3476–3484 (2022)

    Article  CAS  Google Scholar 

  38. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Stręk, Persistent luminescence phenomena in materials doped with rare earth ions. Solid State Chem. 171, 114–122 (2003)

    Article  CAS  Google Scholar 

  39. X.Q. Li, L.P. Lu, H.Y. Sun, X.Y. Zhang, Z.H. Bai, X.Y. Mi, Er3+, Yb3+ Co-doped Gd2O2S up-conversion phosphor: crystal structure, up-conversion luminescence and luminescence lifetime. ECS J. Solid State Sci. Technol. 9, 106001 (2020)

    Article  CAS  Google Scholar 

  40. T.Y. Bian, T.H. Zhou, Y. Zhang, Preparation and applications of rare-earth-doped ferroelectric oxides. Energies 15(22), 8442 (2022)

    Article  CAS  Google Scholar 

  41. Y.T. Huang, S.J. Zhuang, L.X. Peng, J.S. Wu, T.D. Liao, C.H. Xu, Y.F. Duan, Efficiency improvement of up-conversion luminescence of Yb3+/Tm3+ co-doped tellurite glass microsphere. J. Alloys Compd. 748, 93–99 (2018)

    Article  CAS  Google Scholar 

  42. H.N. Liu, J.T. Wang, H. Wang, J.W. Xu, C.R. Zhou, W. Qiu, Er3+ and Sr(Bi0.5Nb0.5)O3-modified (K0.5Na0.5)NbO3: a new transparent fluorescent ferroelectric ceramic with high light transmittance and good luminescence performance. Ceram. Int. 48, 4230–4237 (2022)

    Article  CAS  Google Scholar 

  43. X. Liu, H.T. Wu, S.Y. Shi, H. Wang, J.W. Xu, L. Yang, W. Qiu, Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 33, 22400–22409 (2022)

    Article  CAS  Google Scholar 

  44. X. Ren, Q. Chai, X. Zhao, Z. Peng, D. Wu, P. Liang, L. Wei, Z. Yang, X. Chao, Relaxor behaviors and electric response in transparent 0.95(K0.5Na0.5NbO3)-0.05Ca(ZrxZnyNbz)1.025O3 ceramics with low-symmetric structure. Ceram. Int. 45, 3961–3968 (2019)

    Article  CAS  Google Scholar 

  45. J. Zhang, L. Yang, J.W. Xu, C.R. Zhou, C.L. Yuan, H. Wang, G.H. Rao, Photo-dielectric response enhancement and switching behavior of (1-x)(K0.5Na0.5)NbO3-xCa(Ni0.5Nb0.5)O3-δ ceramics by semiconduction method. J. Alloys Compd. 881, 160512 (2021)

    Article  CAS  Google Scholar 

  46. X. Zhang, F. Yang, W.J. Miao, Z. Su, J.H. Zhao, L.M. Tang, Y.H. Shen, D. Hu, Y.Y. Chen, P. Li, J.J. Liu, Z.B. Pan, Effective improved energy storage performances of Na0.5Bi0.5TiO3-based relaxor ferroelectrics ceramics by A/B-sites co-doping. J. Alloys Compd. 883, 160837 (2021)

    Article  CAS  Google Scholar 

  47. J. Wang, L.H. Luo, Y.P. Huang, W.P. Li, F.F. Wang, Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1-x)K0.5Na0.5NbO3-xLiNbO3 ceramics. Appl. Phys. Lett. 107, 192901 (2015)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Nature Science Foundation of China (61965007) and Guangxi Key Laboratory of Information Materials, (Guilin University of Electronic Technology), P. R. China (201007-Z).

Author information

Authors and Affiliations

Authors

Contributions

All authors jointly participated in the data collection and experimental program exploration. Data collection, analysis and initial manuscript were completed by first author: LW. Revision and refinement of the manuscript was performed by the corresponding author: HW and the manuscript was published with the consent of all authors.

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, J., Liu, K. et al. Impact of Er addition on the electrical, optical, and transmittance characteristics of 0.91KNN–0.09SMT ferroelectric ceramics. J Mater Sci: Mater Electron 34, 1038 (2023). https://doi.org/10.1007/s10854-023-10455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10455-1

Navigation