Skip to main content
Log in

Multiphase design induced improved electrical response in BNZ modified (K0.485Na0.485Li0.03)(Nb0.96Sb0.04)O3 piezoceramics with high Curie temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A detailed investigation of structural, electrical and piezoelectric properties has been performed on lead-free piezoelectric ceramics (1 − x)(K0.485Na0.485Li0.03)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)ZrO3 [(1 − x)KNNLS-xBNZ], synthesized by traditional solid-state sintering technique. The Rietveld refinement of the XRD patterns confirms the coexistence of rhombohedral–orthorhombic (R–O) and orthorhombic–tetragonal (O–T) phases near room temperature. Temperature-dependent dielectric study reveals that an optimum amount of BNZ in KNNLS can shift the phase transition temperature (TR–O) towards room temperature and improve the piezoelectric properties of (1 − x)KNNLS-xBNZ ceramics. For BNZ content of x = 0.015, the (1 − x)KNNLS-xBNZ ceramic exhibits enormous increase in its (i) room temperature dielectric constant εr by 250% with a simultaneous decrease in the dielectric loss tanδ, and (ii) remnant polarization Pr by 120% with a favorable decrease in the coercivity Ec, from their corresponding values observed for x = 0. This composition also shows enhanced piezoelectric properties with piezoelectric charge coefficient d33 = 326 pC/N, and electromechanical coupling factor kp = 39%, and an appreciably higher Curie temperature Tc of 335 °C. The improved properties of the composition have been explained on the basis of various features such as crystallite size, lattice strain, grain size, and favorable phase structure of the evolved ceramic system consequent upon addition of BNZ. The study demonstrates that an optimum addition of BNZ in KNNLS can greatly enhance the dielectric, ferroelectric and piezoelectric properties along with the Curie temperature which can widen the scope of using this system in various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H. Jaffe, D.A. Berlincourt, Piezoelectric transducer materials. Proc. IEEE 53, 1372–1386 (1965). https://doi.org/10.1109/PROC.1965.4253

    Article  Google Scholar 

  2. D.A. Berlincourt, C. Molik, H. Jaffe, Piezoelectric properties of polycrystalline lead titanate zirconate compositions. Proc. IRE 48, 220–229 (1960). https://doi.org/10.1109/JRPROC.1960.287467

    Article  CAS  Google Scholar 

  3. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Genge, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review. Prog. Mater. Sci. 68, 1–66 (2015). https://doi.org/10.1016/j.pmatsci.2014.10.002

    Article  CAS  Google Scholar 

  4. P.Y. Chen, C.S. Chen, C.C. Chou, T.Y. Tseng, H.D. Chen, Microstructures and electrical properties of lead-based PBZNZT and lead-free BNKT piezoelectric ceramics using microwave sintering. Curr. Appl. Phys. 11, S110–S119 (2011). https://doi.org/10.1016/j.cap.2011.03.039

    Article  Google Scholar 

  5. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013). https://doi.org/10.1111/jace.12715

    Article  CAS  Google Scholar 

  6. J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015). https://doi.org/10.1021/cr5006809

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004). https://doi.org/10.1038/nature03028

    Article  CAS  Google Scholar 

  8. K. Uchino, Ferroelectric Devices (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  9. Y. Zhang, J.F. Li, Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C 7, 4284 (2019). https://doi.org/10.1039/C9TC00476A

    Article  Google Scholar 

  10. Y.L. Qin, J.L. Zhang, W.Z. Yao, C.J. Lu, S.J. Zhang, Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3-Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl. Mater. Interfaces 8, 7257–7265 (2016). https://doi.org/10.1021/acsami.6b00377

    Article  CAS  Google Scholar 

  11. L.M. Jiang, J. Xing, Z. Tan, J.G. Wu, Q. Chen, D.Q. Xiao, J.G. Zhu, High piezo- electricity in (K, Na)(Nb, Sb)O3-(Bi, La, Na, Li)ZrO3 lead-free ceramics. J. Mater. Sci. 51, 4963–4972 (2016). https://doi.org/10.1007/s10853-016-9801-2

    Article  CAS  Google Scholar 

  12. M.H. Zhang, K. Wang, Y.J. Du, G. Dai, W. Sun, G. Li, D. Hu, H.C. Thong, C.L. Zhao, X.Q. Xi, Z.X. Yue, J.F. Li, High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J. Am. Chem. Soc. 139, 3889–3895 (2017). https://doi.org/10.1021/jacs.7b00520

    Article  CAS  Google Scholar 

  13. T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017). https://doi.org/10.1039/C6EE03597C

    Article  CAS  Google Scholar 

  14. F.L. Li, Q. Gou, J. Xing, Z. Tan, L.M. Jiang, L.X. Xie, J.G. Wu, W. Zhang, D.Q. Xiao, J.G. Zhu, The piezoelectric and dielectric properties of sodium potassium niobate ceramics with new multiphase boundary. J. Mater. Sci. Mater. Electron. 28, 18090–78098 (2017). https://doi.org/10.1007/s10854-017-7753-1

    Article  CAS  Google Scholar 

  15. C.L. Zhao, B. Wu, K. Wang, J.F. Li, D.Q. Xiao, J.G. Zhu, J.G. Wu, Practical high strain with superior temperature stability in lead-free piezoceramics through domain engineering. J. Mater. Chem. A 6, 23736–23745 (2018). https://doi.org/10.1039/C8TA06425C

    Article  CAS  Google Scholar 

  16. X. Lv, J.G. Wu, C.L. Zhao, D.Q. Xiao, J.G. Zhu, Z.H. Zhang, C.H. Zhang, X.X. Zhang, Enhancing temperature stability in potassium-sodium niobate ceramics through phase boundary and composition design. J. Eur. Ceram. Soc. 39, 305–315 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.08.039

    Article  CAS  Google Scholar 

  17. F.L. Li, Z. Tan, J. Xing, L.M. Jiang, B. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, Investigation of new lead free (1–x)KNNS-BKZH piezo-ceramics with R-O-T phase boundary. J. Mater Sci. Mater. Electron. 28, 8803–8809 (2017). https://doi.org/10.1007/s10854-017-6607-1

    Article  CAS  Google Scholar 

  18. Q. Liu, J.F. Li, L. Zhao, Y.C. Zhang, J. Gao, W. Sun, K. Wang, L.T. Li, Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J. Mater. Chem. C 6, 1116–1125 (2018). https://doi.org/10.1039/C7TC04813K

    Article  CAS  Google Scholar 

  19. H.R. Fu, Y.G. Wang, H. Guo, A. Jain, F.G. Chen, Enhancing photostriction in KNN-based ceramics by constructing the morphotropic phase boundary and narrowing the energy band gap. Ceram. Int. 47, 10996–11002 (2021). https://doi.org/10.1016/j.ceramint.2020.12.221

    Article  CAS  Google Scholar 

  20. R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142–144 (2009). https://doi.org/10.1002/pssr.200903090

    Article  CAS  Google Scholar 

  21. R.P. Wang, H. Bando, M. Kidate, Y. Nishihara, M. Itoh, Effects of A-site ions on the phase transition temperatures and dielectric properties of (1–x)(Na0.5K0.5) NbO3-xAZrO3 solid solutions. Jpn. J. Appl. Phys. 50, 09ND10 (2011). https://doi.org/10.1143/JJAP.50.09ND10

    Article  CAS  Google Scholar 

  22. R.P. Wang, M. Itoh, Phase diagram of (Na0.5K0.5)NbO3-(Bi0.5Na0.5)ZrO3 solid solution. J. Adv. Dielectr. 6, 1650014 (2016). https://doi.org/10.1142/S2010135X16500144

    Article  CAS  Google Scholar 

  23. J. Xing, T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Progress on the doping and phase boundary design of potassium-sodium niobate lead-free ceramics. J. Adv. Dielectr. 8, 1830003 (2018). https://doi.org/10.1142/S2010135X18300037

    Article  CAS  Google Scholar 

  24. Z. Jialiang, Z. Chunming, Evolution of domain structure in 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.04(Bi0.50Na0.50)ZrO3 ceramics with poling and temperature. J. Materiom. 8, 9–17 (2022). https://doi.org/10.1016/j.jmat.2021.06.004

    Article  Google Scholar 

  25. Z. Chunming, J. Zhang, J. Yao, W. Wang, X. Liu, D. Sun, X. Sun, Piezoelectric performance, phase transitions, and domain structure of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.04(Bi0.50Na0.50)ZrO3 ceramics. J. Appl. Phys. 16, 1–8 (2018). https://doi.org/10.1063/1.5048345

    Article  CAS  Google Scholar 

  26. C. Zhou, J. Zhang, W. Yao, D. Liu, W. Su, Highly temperature-stable piezoelectric properties of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.03BaZrO3–0.01(Bi0.50Na0.50)ZrO3 ceramic in common usage temperature range. Scr. Mater. 162, 86–89 (2019). https://doi.org/10.1016/j.scriptamat.2018.10.048

    Article  CAS  Google Scholar 

  27. R. Gaur, K.C. Singh, R. Laishram, Piezoelectric properties of (K0.5Na0.5)1−xLix(Nb0.96Sb0.04)O3 ceramics prepared from nanocrystalline powders. Ceram. Int. 41, 1413–1420 (2015). https://doi.org/10.1016/j.ceramint.2014.09.074

    Article  CAS  Google Scholar 

  28. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram. Int. 46, 1390–1395 (2020). https://doi.org/10.1016/j.ceramint.2019.09.102

    Article  CAS  Google Scholar 

  29. H. Tao, J. Wu, T. Zheng, X. Wang, X. Lou, New (1- x)K0.45Na0.55Nb0.96Sb0.04O3- x Bi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties. J. Appl. Phys. 118, 8 (2015). https://doi.org/10.1063/1.4927281

    Article  CAS  Google Scholar 

  30. S. Dwivedi, T. Pareek, S. Kumar, Structure, dielectric, and piezoelectric properties of K0.5Na0.5NbO3-based lead-free ceramics. RSC Adv. 8, 24286–24296 (2018). https://doi.org/10.1039/C8RA04038A

    Article  CAS  Google Scholar 

  31. D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, Composition and temperature dependence of structure and piezoelectricity in (1–x)(K1−yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc. 100, 627–637 (2017). https://doi.org/10.1111/jace.14589

    Article  CAS  Google Scholar 

  32. R. Carvajal, J. Laboratory, FULLPROF a Rietveld and pattern matching and analysis program, Laboratoire Leon Brillouin, CEA-CNRS, France (2011), http://www.ill.eu/sites/fullprof

  33. B. Orayech, A. Faik, G.A. López, O. Fabelo, J.M. Igartua, Mode-crystallography analysis of the crystal structures and the low- and high-temperature phase transitions in Na0.5K0.5NbO3. J. Appl. Crystallogr. 48, 318–333 (2015). https://doi.org/10.1107/S1600576715000941

    Article  CAS  Google Scholar 

  34. A.W. Hewat, Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures. J. Phys. C: Solid State Phys. 6, 2559–2572 (2001). https://doi.org/10.1088/0022-3719/6/16/010

    Article  Google Scholar 

  35. B.D. Cullity, Elements of X-Ray Diffraction (Addison and Wesley Publishing Company Inc., Boston, 1978)

    Google Scholar 

  36. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  37. M. Kosec, B. Malic, A. Bencan, T. Rojac, KNN-based piezoelectric ceramics, in Piezoelectric and Acoustic Materials Transducer Applications. ed. by A. Safari, E.K. Akdoğan (Springer, Boston, 2008), pp.81–102

    Chapter  Google Scholar 

  38. Y. Pan, L. Huang, J. Feng, X. Yu, Z. Xu, Non-Arrhenius behavior of grain growth in (K, Na)NbO3-based ceramics and its effect on piezoelectric properties. Ceram. Int. 48, 37085–37094 (2022). https://doi.org/10.1016/j.ceramint.2022.08.284

    Article  CAS  Google Scholar 

  39. C. Wattanawikkam, N. Vittayakorn, T. Bongkarn, Low temperature fabrication of lead-free KNN-LS-BS ceramics via the combustion method. Ceram. Int. 39, S399–S403 (2013). https://doi.org/10.1016/j.ceramint.2012.10.102

    Article  CAS  Google Scholar 

  40. H. Tao, J. Wu, Giant piezoelectric effect and high strain response in (1-x)(K0.45Na0.55)(Nb1-ySby)O3-xBi0.5Na0.5Zr1-zHfzO3 ( lead-free ceramics. J. Eur. Ceram. Soc. 36, 1605–1612 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.01.043

    Article  CAS  Google Scholar 

  41. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3-Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J. Mater. Chem. C 2, 8796–8803 (2014). https://doi.org/10.1039/C4TC01533A

    Article  CAS  Google Scholar 

  42. L. Jiang, J. Xing, Z. Tan, J. Wu, Q. Chen, D. Xiao, J. Zhu, High piezoelectricity in (K, Na)(Nb, Sb)O3-(Bi, La, Na, Li)ZrO3 lead-free ceramics. J. Mater. Sci. 51, 4963–4972 (2016). https://doi.org/10.1007/s10853-016-9801-2

    Article  CAS  Google Scholar 

  43. F. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa, J.E. García, R.E. Rojas-Hernandez, M. Castro, L. Ramajo, Understanding the piezoelectric properties in potassium-sodium niobate-based lead-free piezoceramics: interrelationship between intrinsic and extrinsic factors. J. Eur. Ceram. Soc. 37, 3501–3509 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.045

    Article  CAS  Google Scholar 

  44. M.A. Dar, K. Majid, K.M. Batoo, R.K. Kotnala, Dielectric and impedance study of polycrystalline Li0.35−0.5XCd0.3NiXFe2.35−0.5XO4 ferrites synthesized via a citrate-gel auto combustion method. J. Alloys Compds. 632, 307–320 (2015). https://doi.org/10.1016/j.jallcom.2015.01.190

    Article  CAS  Google Scholar 

  45. D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, Large piezoelectric effect in Pb-free Ba (Ti, Sn)O3–x(Ba, Ca)TiO3 ceramics. Appl. Phys. Lett. 99, 122901 (2011). https://doi.org/10.1063/1.3640214

    Article  CAS  Google Scholar 

  46. G. Gong, G. Zerihun, Y. Fang, S. Huang, C. Yin, S. Yuan, X.M. Chen, Relaxor behavior and large room-temperature polarization of ferroelectric Sr4CaBiTi3Nb7O30 ceramics. J. Am. Ceram. Soc. 98, 109–113 (2015). https://doi.org/10.1111/jace.13256

    Article  CAS  Google Scholar 

  47. F. Jona, G. Shirane, Ferroelectric Crystals (Pergemon Press, New York, 1993)

    Google Scholar 

  48. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, Good temperature stability and fatigue-free behavior in Sm2O3-modified 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free piezoelectric ceramics. Mater. Res. Bull. 65, 94–102 (2015). https://doi.org/10.1016/j.materresbull.2015.01.044

    Article  CAS  Google Scholar 

  49. Y. Cheng, J. Xing, C. Wu, T. Wang, L. Xie, Y. Liu, X. Xu, K. Wang, D. Xiao, J. Zhu, Investigation of high piezoelectric properties of KNNSb-SrxBNZ ceramics. J. Alloys Compds. 815, 152252 (2020). https://doi.org/10.1016/j.jallcom.2019.152252

    Article  CAS  Google Scholar 

  50. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44, 55–61 (2011). https://doi.org/10.1080/00150198208260644

    Article  Google Scholar 

  51. J. Xing, Z. Tan, X. Chen, L. Jiang, W. Wang, X. Deng, B. Wu, J. Wu, D. Xiao, J. Zhu, Rietveld analysis and electrical properties of BiInO3 doped KNN-based ceramics. Inorg. Chem. 58, 428–438 (2019). https://doi.org/10.1021/acs.inorgchem.8b02600

    Article  CAS  Google Scholar 

  52. I. Coondoo, N. Panwar, H. Amorίn, V.E. Ramana, M. Alguero, A. Kholkin, Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. J. Am. Ceram. Soc. 98, 3127–3135 (2015). https://doi.org/10.1111/jace.13713

    Article  CAS  Google Scholar 

  53. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behaviour of dense nanocrystalline BaTiO3 ceramics. Phys. Review. B. 70, 024107 (2004). https://doi.org/10.1103/PhysRevB.70.024107

    Article  CAS  Google Scholar 

  54. G. Deng, Q. Yin, A. Ding, X. Zheng, W. Cheng, P. Qiu, High piezoelectric and dielectric properties of La-doped 0.3Pb(Zn1/3Nb2/3)O3–0.7Pb(ZrxTi1−x)O3 ceramics near morphotropic phase boundary. J. Am. Ceram. Soc. 88, 2310–2314 (2005). https://doi.org/10.1111/j.1551-2916.2005.00391.x

    Article  CAS  Google Scholar 

  55. B.M. Jin, J. Kim, S.C. Kim, Effect of Grain size on electrical properties of PbZr0.52Ti0.48O3 ceramics. Appl. Phys. A 65, 53–56 (1997)

    Article  CAS  Google Scholar 

  56. K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloys Compds. 496, 717–722 (2010). https://doi.org/10.1016/j.jallcom.2010.02.181

    Article  CAS  Google Scholar 

  57. R. Zhao, Y. Li, Z. Zheng, W. Kang, Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics. Mater. Chem. Phys. 245, 122806 (2020). https://doi.org/10.1016/j.matchemphys.2020.122806

    Article  CAS  Google Scholar 

Download references

Funding

The author declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SR: data curation and writing-original draft. C: investigation and methodology. RL: resources and formal analysis. RG: software and visualization. SS: resources and discussion. KCS: review and editing, resources, and supervision.

Corresponding author

Correspondence to K. Chandramani Singh.

Ethics declarations

Conflict interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We have attached coloured figures for online publication only.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 468 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, S., Chitra, Laishram, R. et al. Multiphase design induced improved electrical response in BNZ modified (K0.485Na0.485Li0.03)(Nb0.96Sb0.04)O3 piezoceramics with high Curie temperature. J Mater Sci: Mater Electron 34, 1024 (2023). https://doi.org/10.1007/s10854-023-10453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10453-3

Navigation