Skip to main content
Log in

Improved poisoning resistance of Cu-coated LaNiAl alloy prepared by magnetron-sputtering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To enhance the poisoning resistance of LaNiAl, high-purity Cu-coated LaNiAl was prepared using magnetron sputtering. SEM, EDS, and TEM were employed to examine the Cu-coated LaNiAl. The results show that copper is deposited on the surface of LaNiAl in the form of nanodots. With the increase of sputtering power, the particle size of nanoparticles decreases and the coverage increases. Kinetic curves of hydrogen absorption were generated for both bare and Cu-coated LaNiAl under different impurity gases. Cu-coated LaNiAl shows better hydrogen absorption performance. Copper nanodots deposited by magnetron sputtering can improve the poisoning resistance of hydrogen storage alloys. Using XPS, surface states of samples were initially examined both before and after CO poisoning. The analysis shows that the copper oxide/metal interfaces improved resistance to CO-containing impurity gases through catalytic oxidation of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K.L. Shanahan, J.S. Holder, D.R. Bell, J.R. Wermer, Tritium aging effects in LaNi4.25Al0.75. J. Alloy. Compd. 356, 382–385 (2003). https://doi.org/10.1016/s0925-8388(03)00139-7

    Article  Google Scholar 

  2. H. Glasbrenner, H. Klewe-Nebenius, M. Bruns, G. Pfennig, R.D. Penzhorn, H.J. Ache, Surface analytical investigation of the tritium getter ZrCo after exposure to various gases. Microchim. Acta 107(3), 207–217 (1992). https://doi.org/10.1007/BF01244474

    Article  CAS  Google Scholar 

  3. G.D. Sandrock, P.D. Goodell, Cyclic life of metal hydrides with impure hydrogen: overview and engineering considerations. J. Less Common Metals 104(1), 159–173 (1984). https://doi.org/10.1016/0022-5088(84)90452-1

    Article  CAS  Google Scholar 

  4. F.R. Block, H.-J. Bahs, Investigation of selective absorption of hydrogen by LaNi5 and FeTi. J. Common Metals 89, 77–84 (1983). https://doi.org/10.1016/0022-5088(83)90251-5

    Article  CAS  Google Scholar 

  5. S. Han, X. Zhang, S. Shi, H. Tanaka, N. Kuriyama, N. Taoka, K. Aihara, X. Qiang, Experimental and theoretical investigation of the cycle durability against CO and degradation mechanism of the LaNi5 hydrogen storage alloy. J. Alloy. Compd. 446–447, 208–211 (2007). https://doi.org/10.1016/j.jallcom.2007.01.029

    Article  CAS  Google Scholar 

  6. G. Zhang, T. Tang, G. Sang, Y. Xiong, W. Wu, Y. Wei, Effect of Ti modification on hydrogenation properties of ZrCo in the presence of CO contaminant gas. Rare Metal Mater. Eng. 46(11), 3366–3373 (2017)

    CAS  Google Scholar 

  7. H.C. Lin, K.M. Lin, C.W. Sung, Characteristics of activation and anti-poisoning in an LmNi4.8Al0.2 hydrogen storage alloy. Int. J. Hydrogen Energy 32, 2494–2500 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.064

    Article  CAS  Google Scholar 

  8. A.S. Poore, W.D. Jacobs, New systems for waste processing of tritium-containing gases at the savannah river site. Fusion Sci. Technol. 48(1), 298–301 (2005). https://doi.org/10.1007/s10512-005-0240-4

    Article  CAS  Google Scholar 

  9. W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloy. Compd. 315(1–2), 237–242 (2001). https://doi.org/10.1016/s0925-8388(00)01284-6

    Article  CAS  Google Scholar 

  10. X.L. Wang, K. Iwata, S. Suda, Hydrogen purification using fluorinated LaNi4.7Al0.3 alloy. J. Alloys Compd. 231(1), 860–864 (1995). https://doi.org/10.1016/0925-8388(95)01773-9

    Article  CAS  Google Scholar 

  11. X. Guo, S. Wang, Z. Li, L. Jiang, Study on the poisoning resistance of Pd-coated ZrCo alloy prepared by electroless plating method. Fusion Eng. Des. 113, 195–200 (2016). https://doi.org/10.1016/j.fusengdes.2016.09.010

    Article  CAS  Google Scholar 

  12. J. Ren, M. Williams, M. Lototskyy, W. Davids, Ø. Ulleberg, Improved tolerance of Pd/Cu-treated metal hydride alloys towards air impurities. Int. J. Hydrogen Energy 35(16), 8626–8630 (2010). https://doi.org/10.1016/j.ijhydene.2010.06.009

    Article  CAS  Google Scholar 

  13. S. Nayebossadri, J. Speight, D. Book, Novel pd-cu-zr hydrogen separation membrane with a high tolerance to sulphur poisoning. Chem. Commun 51, 15842–15845 (2015). https://doi.org/10.1039/c5cc04327a

    Article  CAS  Google Scholar 

  14. M.L. Bosko, F.A. Marchesini, L.M. Cornaglia, E.E. Miró, Controlled pd deposition on carbon fibers by electroless plating for the reduction of nitrite in water. Catal. Commun. 16(1), 189–193 (2011). https://doi.org/10.1016/j.catcom.2011.09.034

    Article  CAS  Google Scholar 

  15. O.M. Alyousif, R. Nishimura, The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions. Corros. Sci. 49(7), 3040–3051 (2007). https://doi.org/10.1016/j.corsci.2006.12.023

    Article  CAS  Google Scholar 

  16. A. Taguchi, T. Kitami, Surface coating with various metals on spherical polymer particles by using barrel sputtering technique. J. Alloy. Compd. 441(1–2), 162–167 (2007). https://doi.org/10.1016/j.jallcom.2006.07.131

    Article  CAS  Google Scholar 

  17. J. Wang, Y. Zhang, M. Yi, Z. Shen, L. Liu, H. Liu, X. Zhang, Coating LiFePO4 with conductive nanodots by magnetron sputtering: toward high-performance cathode for lithium-ion batteries. Energy Technol. 7(3), 9 (2019). https://doi.org/10.1002/ente.201800634

    Article  CAS  Google Scholar 

  18. S. Aumaitre, T. Schnautz, C.A. Kruelle, I. Rehberg, Granular phase transition as a precondition for segregation. Phys. Rev. Lett. 90(11), 4 (2003). https://doi.org/10.1103/PhysRevLett.90.114302

    Article  CAS  Google Scholar 

  19. M. Lee, K.J. Kim, R.R. Hopkins, K. Gawlik, Thermal conductivity measurements of copper-coated metal hydrides (LaNi5, Ca0.6Mm0.4Ni5, and LaNi4.75Al0.25) for use in metal hydride hydrogen compression systems. Int. J. Hydrogen Energy 34(7), 3185–3190 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.078

    Article  CAS  Google Scholar 

  20. Y. Chen, H. Huang, D. Li, Development of study on effects to hydrogen storage alloys by Cu. Mater. Rev. 23(11), 15–18 (2009). https://doi.org/10.3321/j.issn:1005-023X.2009.11.003

    Article  Google Scholar 

  21. N.S. Mcintyre, M.G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47(13), 2208–2213 (1975). https://doi.org/10.1021/ac60363a034

    Article  CAS  Google Scholar 

  22. Á.A. Amayaa, C.A. Gonzálezb, M.E. Niño-Gómeza, M.O. Fernando, XPS fitting model proposed to the study of Ni and La in deactivated FCC catalysts. J. Electron Spectrosc. Relat. Phenom. 233, 5–10 (2019). https://doi.org/10.1016/j.elspec.2019.03.007

    Article  CAS  Google Scholar 

  23. M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvika, T.E. Norby, A.E. Gunnæs, XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron Spectrosc. Relat. Phenom. 184, 399–409 (2011). https://doi.org/10.1016/j.elspec.2011.04.002

    Article  CAS  Google Scholar 

  24. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Cu and Cu-based nanoparticles: synthesis and applications in review catalysis. Chem. Rev. 116(6), 3722–3811 (2016). https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  Google Scholar 

  25. A. Martínez-Arias, D. Gamarra, A.B. Hungría, M. Fernández-García, G. Munuera, A. Hornés, P. Bera, J.C. Conesa, A.L. Cámara, Characterization of active sites/entities and redox/catalytic correlations in copper-ceria-based catalysts for preferential oxidation of CO in H2-rich streams. Catalysts 3(2), 378–400 (2013). https://doi.org/10.3390/catal3020378

    Article  CAS  Google Scholar 

  26. S. Ge, L. Xuejian, L. HongWei, S. Ying, W. Sheng, S. Yongjun, T. Mingjing, L. Wenhua, A surface analytical study on poisoning of LaNi4.7Al0.3 by CO. Fus. Sci. Technol. 41(3), 758–763 (2002). https://doi.org/10.13182/FST02-A22688

    Article  CAS  Google Scholar 

  27. V. Matolin, I. Matolinova, F. Sutara, K. Veltruska, CO interaction with Ni3Al alloy: XPS, LEIS and TPD study. Surface Sci. 566(2), 1093–1096 (2004). https://doi.org/10.1016/j.susc.2004.06.057

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ministry of Science and Technology of the People's Republic of China (National Key Research and Development Program, Item No.2022YFB3803705).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by FY, MD, and ZF. LH, SL, JM, ZL, and SW provided guidance for the research. The first draft of the manuscript was written by FY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lei Hao.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Hao, L., Du, M. et al. Improved poisoning resistance of Cu-coated LaNiAl alloy prepared by magnetron-sputtering method. J Mater Sci: Mater Electron 34, 1027 (2023). https://doi.org/10.1007/s10854-023-10446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10446-2

Navigation