Skip to main content
Log in

Revived BBFTO double perovskite with improved dielectric properties for some possible device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 26 August 2023

This article has been updated

Abstract

A solid-state reaction procedure was followed to synthesize the BaBi1.4Fe0.6TiO6 ceramic. To compensate for the Bi3+ evaporation during the high-temperature sintering process, more Bi3+ content was so selected, further, it adds more promising ferroelectric and dielectric orders. The monoclinic crystal system formation was checked by the X-Ray Diffraction and Rietveld refinement methods. The average crystallite size is 37.46 nm, while the average grain size is 137.28 nm, which implies that a single grain might have contained some single-phase crystallites. The Energy-Dispersive X-Ray spectrum confirmed the sample’s elemental purity. The material belongs to a perovskite phase, which was supported by some appeared usual vibrational modes in the Fourier-Transform Infrared analysis. The UV–Visible absorbance property results cutoff wavelength of 590 nm and the optical direct bandgap Eg = 2.53 eV. The remanent magnetization of 2Pr = 0.782µC/cm2 supports the ferroelectric nature. The room temperature (RT) dielectric parameter at 100 Hz has a higher ɛr (1408) and lower tanδ (0.24) as well as a higher transition (Td > 350 °C) and Curie temperature (Tc > 485 °C). Deviation from the Debye-type relaxation process and semiconducting nature were observed in the sample. The conductivity nature is obedient to the Arrhenius law, which results in dc conductivity activation energy, Ea = 0.94 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Some of the data generated during this study are included in this article. The rest datasets generated during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. G. Goodman, J. Am. Ceram. Soc. 36, 368 (1953)

    Article  CAS  Google Scholar 

  2. S. Fujishima, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1 (2000)

    Article  CAS  Google Scholar 

  3. G.H. Haertling, J. Am. Cer. Soc. 82(4), 797 (1999)

    Article  CAS  Google Scholar 

  4. Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25 (2001)

    Article  CAS  Google Scholar 

  5. S. Sen, A. Mondal, R.K. Parida, B.N. Parida, Inorg. Chem. Commun. 142, 109664 (2022)

    Article  CAS  Google Scholar 

  6. D.K. Pati, M. Priyadarsini, P.R. Das, B.N. Parida, R. Padhee, J. Electron. Mater. 51, 1385 (2022)

    Article  CAS  Google Scholar 

  7. Y. Lan, X. Feng, X. Zhang, Y. Shen, D. Wang, Phys. Lett. A 380, 2962 (2016)

    Article  CAS  Google Scholar 

  8. L.M. Wanga, Q.X. Liu, D. Zhou, Mater. Lett. 283, 128823 (2021)

    Article  Google Scholar 

  9. L.F. Zhu, B.P. Zhang, Z.C. Zhang, S. Li, L.J. Wang, L. Zheng, J. Mater. Sci.: Mater. Electron. 29(3), 2307 (2018)

    CAS  Google Scholar 

  10. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, Z. Liu, Ceram. Int. 38, S411–S414 (2012)

    Article  CAS  Google Scholar 

  11. W. Yi, Z. Lu, X. Liu, D. Huang, Z. Jia, Z. Chen, X. Wang, H. Zhu, J. Mater. Sci.: Mater. Electron. 32, 22637 (2021)

    CAS  Google Scholar 

  12. F. Brahma, L. Sahoo, S. Bhattacharjee, R.L. Hota, B.N. Parida, R.K. Parida, Mater. Today: Proc. 67, 1175 (2022)

    Article  CAS  Google Scholar 

  13. M. Cabral, A.P. Brown, J. Bultitude, A. Britton, R. Brydson, T. Roncal-Herrero, D.A. Hall et al., J. Eur. Ceram. Soc. 43, 362 (2023)

    Article  CAS  Google Scholar 

  14. A. Prasatkhetragarna, T. Sareeinc, N. Triamnak, R. Yimnirune, Ferroelectrics 586, 224 (2022)

    Article  Google Scholar 

  15. S. Gupta, M. Tomar, V. Gupta, A.R. James, M. Pal, R. Guo, A. Bhalla, J. Appl. Phys. 115, 234105 (2014)

    Article  Google Scholar 

  16. F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen, J. Zhai, Energy Storage Mater. 30, 392 (2020)

    Article  Google Scholar 

  17. T. Ahmed, S.A. Khan, J. Bae, M. Habib, F. Akram, S.Y. Choi, A. Hussain et al., Solid State Sci. 114, 106562 (2021)

    Article  CAS  Google Scholar 

  18. C.L. Diao, C.H. Wang, N.N. Luo, Z.M. Qi, T. Shao, Y.Y. Wang, J. Lu, F. Shi, X.P. Jing, J. Am. Ceram. Soc. 96, 2898 (2013)

    Article  CAS  Google Scholar 

  19. F. Shi, H. Dong, Dalton Trans. 40, 6659–6667 (2011)

    Article  CAS  Google Scholar 

  20. C.L. Diao, C.H. Wang, N.N. Luo, Z.M. Qi, T. Shao, Y.Y. Wang, J. Lu et al., J. Appl. Phys. 115, 114103 (2014)

    Article  Google Scholar 

  21. L. Sahoo, B.N. Parida, R.K. Parida, R. Padhee, A.K. Mahapatra, Inorg. Chem. Commun. 146, 110102 (2022)

    Article  CAS  Google Scholar 

  22. F. Izumi, R.A. Dilanian, Transworld Res. Netw. Trivandrum 3, 699 (2002)

    CAS  Google Scholar 

  23. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Inc., Boston, 1978)

    Google Scholar 

  24. E.C. Xiao, Z. Cao, J. Li, X.H. Li, M. Liu, Z. Yue, Y. Chen et al., J. Am. Ceram. Soc. 103, 2528–2539 (2020)

    Article  CAS  Google Scholar 

  25. S. Wischnitzer, Introduction to Electron Microscopy (Pergamon Press, New York, 1987)

    Google Scholar 

  26. N. Saikia, R. Chakravarty, S. Bhattacharjee, R.L. Hota, R.K. Parida, B.N. Parida, Mater. Sci. Semicond. Process. 151, 106969 (2022)

    Article  CAS  Google Scholar 

  27. T. Acharya, R.N.P. Choudhary, Mater. Chem. Phys. 177, 131 (2016)

    Article  CAS  Google Scholar 

  28. G.B. Kumar, S. Buddhudu, Ceram. Int. 35, 521 (2009)

    Article  CAS  Google Scholar 

  29. E. Traversa, P. Nunziante, L. Sangalett, B. Allieri, J. Am. Ceram. Soc. 83, 1087 (2000)

    Article  CAS  Google Scholar 

  30. R. K. Parida, Bhagyshree Mohanty, S. Bhattacharjee, S. K. Mohanty, and B. N. Parida,. (2020)J. Mater. Sci. Mater. Electron. 31, 21591

  31. B.N. Parida, D.K. Pattanayak, R.K. Parida, B. Mohanty, N.C. Nayak, J. Mol. Struct. 1189, 288 (2019)

    Article  CAS  Google Scholar 

  32. H. Zhang, F. Liu W, P. Wu, X. Hai, S.Y. Wang, G.Y. Liu, G.H. Rao, J. Nano Res. 16, 2205 (2013).

  33. J. Tauc, A. Menth, J. Non-Cryst, Solids 8, 569–585 (1972)

    Google Scholar 

  34. S. Won, S. Choi, B. Chung, D. Park, J. Park, Y.-S. Yun, Ind. Eng. Chem. Res. 43, 7865–7869 (2004)

    Article  CAS  Google Scholar 

  35. X. Chen, W. Shen, D. Liang, R. Quhe, S. Wang, P. Guan, P. Lu, Optical Materials Express 8(5), 1184 (2018)

    Article  CAS  Google Scholar 

  36. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  37. A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10, 1367 (2010)

    Article  Google Scholar 

  38. C. Xing, J. Li, J. Wang, H. Chen, H. Qiao, X. Yin, Q. Wang, Z. Qi, F. Shi, Inorg. Chem. 57, 7121–7128 (2018)

    Article  CAS  Google Scholar 

  39. E.C. Xiao, J. Li, J. Wang, C. Xing, M. Guo, H. Qiao, Q. Wang, Z.M. Qi, G. Dou, F. Shi, J. Materiomics 4, 383–389 (2018)

    Article  Google Scholar 

  40. C. Xing, J. Li, H. Chen, H. Qiao, J. Yang, H. Dong, H. Sun et al., RSC Adv. 7, 35305–35310 (2017)

    Article  CAS  Google Scholar 

  41. E.H. Nicollian, J.R. Brews, John Willey & Sons, New York, 1982.

  42. J.W. Chen, K.R. Chiou, A.C. Hsueh, C.R. Chang, RSC Adv. 9, 12319 (2019)

    Article  CAS  Google Scholar 

  43. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  CAS  Google Scholar 

  44. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 979–982 (1982)

    Google Scholar 

  45. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, JETP 95, 308–315 (2002)

    Article  CAS  Google Scholar 

  46. P.R. Das, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Adv. Ceramics 2, 112–118 (2013)

    Article  CAS  Google Scholar 

  47. B.N. Parida, R. Padhee, D. Suara et al., J Mater Sci Mater Electron 27, 9015 (2016)

    Article  CAS  Google Scholar 

  48. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  CAS  Google Scholar 

  49. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Appl. Phys. A 108, 593 (2012)

    Article  CAS  Google Scholar 

  50. M. Greenblatt, Ionic Conductors, Encyclopedia of Inorganic Chemistry (Wiley, NewYork, 1999)

    Google Scholar 

  51. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983)

    Google Scholar 

  52. A.K. Panda, L.Sahoo, N. Saikia, N. C. Nayak, B.N. Parida, & R. K. Parida, Indian Journal of Physics, 1–9 (2022).

  53. N. Zidi, A. Chaouchi, S. Dastorg, M. Rguiti, C. Courtois, Bull. Mater. Sci. 38, 731 (2015)

    Article  CAS  Google Scholar 

  54. S. Saha, T.P. Sinha, Phys. Rev. B 65, 13 (2002)

    Google Scholar 

  55. M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)

    Article  CAS  Google Scholar 

  56. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  57. S. Bhattacharjee, B. Mohanty, N.C. Nayak, R.K. Parida, B.N. Parida, Mater. Sci. Semicond. Process. 123, 105503 (2021)

    Article  CAS  Google Scholar 

  58. A.K. Panda, L. Sahoo, R. Chakravarty, N.C. Nayak, R.K. Parida, B.N. Parida, R. Dutta, Appl. Phys. A 127, 950 (2021)

    Article  CAS  Google Scholar 

  59. M.K. Adak, D. Dhak, J. Indian Chem. Soc. 96, 563–568 (2019)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

LS: Performed the samples preparation, measurements and paper redaction. BNP: Performed the dielectric measurements and P-E measurement and contributed to the discussion of the dielectric P-E properties. NCN: Performed the UV measurements and contributed to the discussion of the UV properties. RKP: Contributed to the discussion of the structural and morphologic properties.

Corresponding authors

Correspondence to B. N. Parida or R. K. Parida.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We declare that the manuscript is new and not submitted anywhere for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, L., Parida, B.N., Nayak, N.C. et al. Revived BBFTO double perovskite with improved dielectric properties for some possible device applications. J Mater Sci: Mater Electron 34, 1019 (2023). https://doi.org/10.1007/s10854-023-10434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10434-6

Navigation