Skip to main content
Log in

Growth and property analysis of an organic crystal from aqueous solution for non-linear optical applicability: L-Arginium 3,3-Dimethylacrylate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aqueous solution was used for creating a neoteric organic nonlinear optical L-Arginium 3,3-dimethylacrylate (ADMA) crystals using a slow evaporation solution approach. The crystal that was removed from the solution was analysed in terms of optical properties, spectral characteristics, and hardness testing. The crystallographic parameters were determined, and the crystal has a position in the orthorhombic system and the cell parameters found to be a = 5.7476 Å, b = 22.156 Å, and c = 11.2059 Å. The ADMA crystal's UV–Vis spectral analysis was documented, revealing that it possesses a sizable transmission window over the whole visible spectrum and has a lower cut -off wavelength around 251 nm. Tauc's plot was generated to determine the bandgap energy of the ADMA crystal which was 4.94 eV. By FT-Infrared & FT-Raman spectrum analysis, numerous resonance modes and functional groups were identified. The grain boundary flaw in the crystal was identified by SEM investigation. The EDAX experiment explained the well combination of the all the compounds in the grown crystal. To identify the emission and excitation peaks of the produced ADMA crystal, the behaviour of fluorescence was also examined. Red luminescence is caused by the peak 647 nm in the fluorescence emission. To determine the crystal's mechanical characteristics, a microhardness test was conducted. The crystal belongs to soft material category because it has hardening coefficient “n” of 2.69. The L-Arginium 3,3-dimethylacrylate (ADMA) crystal is suitable for optical applications, according to the third-order nonlinear research and the other selected investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P. Capper, Springer handbook of electronic and photonic materials (Springer, 2007), pp.231–254. https://doi.org/10.1007/978-0-387-29185-7_12

    Book  Google Scholar 

  2. Q. Fang, J. Sculley, H.C.J. Zhou, G. Zhu, Comprehensive nanoscience and technology (Elsevier, 2011), pp.1–20. https://doi.org/10.1016/B978-0-12-374396-1.00041-6

    Book  Google Scholar 

  3. A. Hemalatha, S. Arulmani, E. Chinnasamy, S. Senthil, Mater Today Proc (2020). https://doi.org/10.1016/j.matpr.2020.02.202

    Article  Google Scholar 

  4. R.J. Ouellette, J.D. Rawn, Organic chemistry study guide (Elsevier, 2015), pp.569–586. https://doi.org/10.1016/B978-0-12-801889-7.00027-3

    Book  Google Scholar 

  5. B. Aneeba, S.V. Ashvin Santhia, S. Vinu, R.S. Christy, D.A. Al Farraj, N.A. Alkubaisi, Saudi J. Biol. Sci. 27, 2961 (2020). https://doi.org/10.1016/j.sjbs.2020.07.018

    Article  CAS  Google Scholar 

  6. M.L. Caroline, S. Vasudevan, Mater. Lett. 62(15), 2245–2248 (2008). https://doi.org/10.1016/j.matlet.2007.11.059

    Article  CAS  Google Scholar 

  7. K. Rajarajan, G.P. Joseph, S.M.R. Kumar, I.V. Potheher, A.J.A. Pragasam, K. Ambujam, P. Sagayaraj, Mater. Manuf. Proc. 22(3), 370–374 (2007). https://doi.org/10.1080/10426910701190857

    Article  CAS  Google Scholar 

  8. P. Viswanathan, Y. Muralidaran, G. Ragavan, Nanostructures for oral medicine (Elsevier, 2017), pp.173–201. https://doi.org/10.1016/B978-0-323-47720-8.00008-0

    Book  Google Scholar 

  9. R. Usha, N. Hema, V. Revathi Ambika, D. Shalini, D. Jayalakshmi, Mater. Res. Innov. 23, 1–6 (2017). https://doi.org/10.1080/14328917.2017.1391458

    Article  CAS  Google Scholar 

  10. B. Kannan, P.R. Seshadri, P. Murugakoothan, K. Ilangovan, Asian J. Chem. 25(12), 6745–6747 (2013). https://doi.org/10.14233/ajchem.2013.14577

    Article  CAS  Google Scholar 

  11. C.W. Oatley, D. McMullan, K.C.A. Smith, P. Hawkes, The beginnings of electron microscopy—part 2 (Elsevier, 2022). https://doi.org/10.1016/bs.aiep.2022.03.009

    Book  Google Scholar 

  12. R. Niu, K. Han, Y. Su, T. Besara, T.M. Siegrist, X. Zuo, Sci. Rep. (2016). https://doi.org/10.1038/srep31410

    Article  Google Scholar 

  13. R. Usha, D. Jayalakshmi, Asian J. Chem. 30(2), 343–350 (2018). https://doi.org/10.14233/ajchem.2018.20957

    Article  CAS  Google Scholar 

  14. V.S. Kathavate, B. Praveen Kumar, I. Singh, K. Eswar Prasad, Ceram. Int. 47(9), 11870–11877 (2021). https://doi.org/10.1016/j.ceramint.2021.01.027

    Article  CAS  Google Scholar 

  15. K. Mahendra, N.K. Udayashankar, J. Phys. Chem. Solids. (2019). https://doi.org/10.1016/j.jpcs.2019.109263

    Article  Google Scholar 

  16. P. Kathiravan, T. Balakrishnan, C. Srinath, K. Ramamurthi, S. Thamotharan, Karbala Int. J. Modern Sci. 2(4), 226–238 (2016). https://doi.org/10.1016/j.kijoms.2016.08.002

    Article  Google Scholar 

  17. J. Jude Brillin, P. Selvarajan, U. Rajesh Kannan, Growth and characterization of crystals of thiourea sodium fluoride. Int. J. Res. Anal. Rev. 5, 2348 (2018)

    Google Scholar 

  18. C.A. Royer, Protein stability and folding (Human Press, 1995), pp.5–90. https://doi.org/10.1385/0-89603-301-5:65

    Book  Google Scholar 

  19. G. Yi, B. Sun, F. Yang, D. Chen, Y. Zhou, J. Cheng, Chem. Mater. 14(7), 2910–2914 (2002). https://doi.org/10.1021/cm0115416

    Article  CAS  Google Scholar 

  20. C.R. Thaya Kumari, M. Nageshwari, R.G. Raman, M.L. Caroline, J. Mol. Struct. 1163, 137–146 (2018). https://doi.org/10.1016/j.molstruc.2018.02.091

    Article  CAS  Google Scholar 

  21. A.T. Ravichandran, R. Rathika, M. Kumaresavanji, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.129048

    Article  Google Scholar 

  22. S.E. Allen Moses, S. Tamilselvan, S.M. Ravi Kumar, G. Vinitha, T.A. Hegde, G.J. Shanmuga Sundar, S. Sivaraj, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01229-9

    Article  Google Scholar 

  23. M. Yin, H.P. Li, S.H. Tang, W. Ji, Appl. Phys. Lasers Opt. 70(4), 587–591 (2000). https://doi.org/10.1007/s003400050866

    Article  CAS  Google Scholar 

  24. S. Sakthy Priya, A. Alexandar, P. Surendran, A. Lakshmanan, P. Rameshkumar, P. Sagayaraj, Opt. Mater. 66, 434–441 (2017). https://doi.org/10.1016/j.optmat.2017.02.041

    Article  CAS  Google Scholar 

  25. K. Pichan, S.P. Muthu, R. Perumalsamy, J. Cryst. Growth 473, 39–54 (2017). https://doi.org/10.1016/j.jcrysgro.2017.05.018

    Article  CAS  Google Scholar 

Download references

Funding

No particular funding for this research came from governmental, private, or non-profit funding organizations.

Author information

Authors and Affiliations

Authors

Contributions

All author’s contributed equally to the work. This research work was written with the help of all authors.

Corresponding author

Correspondence to D. Jayalakshmi.

Ethics declarations

Conflict of interest

The researchers affirm they are free of no financial or other personal conflicts that might impact the tasks they have performed here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshini, S.R.A., Maga, R., Kanagathara, N. et al. Growth and property analysis of an organic crystal from aqueous solution for non-linear optical applicability: L-Arginium 3,3-Dimethylacrylate. J Mater Sci: Mater Electron 34, 996 (2023). https://doi.org/10.1007/s10854-023-10425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10425-7

Navigation