Skip to main content
Log in

Additives and interface engineering facilitate the fabrication of high-efficiency perovskite solar cells in ambient air-processed

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, additives and interface engineering are used to reduce the defects of perovskite solar cells (PSCs) prepared in ambient air and improve its performance. Specifically, urea is introduced into TiO2 and the perovskite layer, respectively. Both the contact angle and roughness of the TiO2 layer are found to be improved, which is helpful to enhance the quality of the subsequent perovskite layer. In addition, urea is added into the perovskite layer to delay the crystallization process of PbI2 by forming the intermediate products. And the larger grain size and appropriate number of pores are obtained, which lower the crystallization potential energy barrier of the perovskite film during the second-step spin-coating. Interface engineering between the perovskite bottom layer and the TiO2 top layer by PEABr is found that the quasi-2D perovskite is generated at the bottom of the perovskite, and the 2D perovskite could passivate the interface defects of the 3D perovskite. Finally, CsCl is further added to the perovskite, which improves the tolerance factor of the perovskite film. Ultimately, the optimal device exhibits a champion PCE of 18.41%, a nearly 30% improvement compared to the original device, which could facilitate commercialization in ambient air environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15(3), 1625–1636 (2011). https://doi.org/10.1016/j.rser.2010.11.032

    Article  CAS  Google Scholar 

  2. S.Y. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G.C. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399–407 (2014). https://doi.org/10.1039/c3ee43161d

    Article  CAS  Google Scholar 

  3. S. De Wolf, J. Holovsky, S.-J. Moon, P. Loeper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b

    Article  CAS  Google Scholar 

  4. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Graetzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  5. T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. (2018). https://doi.org/10.1002/adma.201706576

    Article  Google Scholar 

  6. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  7. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, T.-W. Lee, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818

    Article  CAS  Google Scholar 

  8. Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, S.I. Seok, M.D. McGehee, E.H. Sargent, H. Han, Challenges for commercializing perovskite solar cells. Science (2018). https://doi.org/10.1126/science.aat8235

    Article  Google Scholar 

  9. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b

    Article  CAS  Google Scholar 

  10. Y.-C. Wang, J. Chang, L. Zhu, X. Li, C. Song, J. Fang, Electron-transport-layer-assisted crystallization of perovskite films for high-efficiency planar heterojunction solar cells. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706317

    Article  Google Scholar 

  11. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  12. M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer, Y. Liu, I.W. Choi, S.J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N.G. An, S. Cho, W.R. Tress, S.M. Zakeeruddin, A. Hagfeldt, J.Y. Kim, M. Gratzel, D.S. Kim, Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302 (2022). https://doi.org/10.1126/science.abh1885

    Article  CAS  Google Scholar 

  13. T. Zhong, L. Shi, H. Hao, J. Dong, K. Tang, X. Xu, S.L. Hamukwaya, H. Liu, J. Xing, Simple method of dual passivation with efficiency beyond 20% for fabricating perovskite solar cells in the full ambient air. ACS Sustain. Chem. Eng. 9(38), 13010–13020 (2021). https://doi.org/10.1021/acssuschemeng.1c04542

    Article  CAS  Google Scholar 

  14. Y. Zhang, A. Kirs, F. Ambroz, C.T. Lin, A.S.R. Bati, I.P. Parkin, J.G. Shapter, M. Batmunkh, T.J. Macdonald, Ambient fabrication of organic–inorganic hybrid perovskite solar cells. Small Methods 5(1), 2000744 (2020). https://doi.org/10.1002/smtd.202000744

    Article  CAS  Google Scholar 

  15. B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019). https://doi.org/10.1039/c8cs00853a

    Article  CAS  Google Scholar 

  16. H. Xie, X. Yin, J. Liu, Y. Guo, P. Chen, W. Que, G. Wang, B. Gao, Low temperature solution-derived TiO2–SnO2 bilayered electron transport layer for high performance perovskite solar cells. Appl. Surf. Sci. 464, 700–707 (2019). https://doi.org/10.1016/j.apsusc.2018.09.146

    Article  CAS  Google Scholar 

  17. A.F. Akbulatov, L.A. Frolova, M.P. Griffin, I.R. Gearba, A. Dolocan, D.A. Vanden Bout, S. Tsarev, E.A. Katz, A.F. Shestakov, K.J. Stevenson, P.A. Troshin, Effect of electron-transport material on light-induced degradation of inverted planar junction perovskite solar cells. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700476

    Article  Google Scholar 

  18. S. Lin, B. Yang, X. Qiu, J. Yan, J. Shi, Y. Yuan, W. Tan, X. Liu, H. Huang, Y. Gao, C. Zhou, Efficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material. Org. Electron. 53, 235–241 (2018). https://doi.org/10.1016/j.orgel.2017.12.002

    Article  CAS  Google Scholar 

  19. S. Zheng, G. Wang, T. Liu, L. Lou, S. Xiao, S. Yang, Materials and structures for the electron transport layer of efficient and stable perovskite solar cells. Science China 62(7), 800–809 (2019). https://doi.org/10.1007/s11426-019-9469-1

    Article  CAS  Google Scholar 

  20. H. Sun, D. Xie, Z. Song, C. Liang, L. Xu, X. Qu, Y. Yao, D. Li, H. Zhai, K. Zheng, C. Cui, Y. Zhao, Interface defects passivation and conductivity improvement in planar perovskite solar cells using Na2S-doped compact TiO2 electron transport layers. ACS Appl. Mater. Interfaces 12(20), 22853–22861 (2020). https://doi.org/10.1021/acsami.0c03180

    Article  CAS  Google Scholar 

  21. H. Kim, J. Hong, C. Kim, E.-Y. Shin, M. Lee, Y.-Y. Noh, B. Park, I. Hwang, Impact of hydroxyl groups boosting heterogeneous nucleation on perovskite grains and photovoltaic performances. J. Phys. Chem. C 122(29), 16630–16638 (2018). https://doi.org/10.1021/acs.jpcc.8b05374

    Article  CAS  Google Scholar 

  22. Y. Li, X. Li, Q. Chu, H. Dong, J. Yao, Y. Zhou, G. Yang, Tuning nucleation sites to enable monolayer perovskite films for highly efficient perovskite solar cells. Coatings (2018). https://doi.org/10.3390/coatings8110408

    Article  Google Scholar 

  23. A.A. Petrov, I.P. Sokolova, N.A. Belich, G.S. Peters, P.V. Dorovatovskii, Y.V. Zubavichus, V.N. Khrustalev, A.V. Petrov, M. Graetzel, E.A. Goodilin, A.B. Tarasov, Crystal structure of DMF-intermediate phases uncovers the link between CH3NH3PbI3 morphology and precursor stoichiometry. J. Phys. Chem. C 121(38), 20739–20743 (2017). https://doi.org/10.1021/acs.jpcc.7b08468

    Article  CAS  Google Scholar 

  24. B. Liu, S. Wang, Z. Ma, J. Ma, R. Ma, C. Wang, High-performance perovskite solar cells with large grain-size obtained by the synergy of urea and dimethyl sulfoxide. Appl. Surf. Sci. 467, 708–714 (2019). https://doi.org/10.1016/j.apsusc.2018.10.141

    Article  CAS  Google Scholar 

  25. L. Han, S. Cong, H. Yang, Y. Lou, H. Wang, J. Huang, J. Zhu, Y. Wu, Q. Chen, B. Zhang, L. Zhang, G. Zou, Environmental-friendly urea additive induced large perovskite grains for high performance inverted solar cells. Solar Rrl (2018). https://doi.org/10.1002/solr.201800054

    Article  Google Scholar 

  26. J. Cao, X. Jing, J. Yan, C. Hu, R. Chen, J. Yin, J. Li, N. Zheng, Identifying the molecular structures of intermediates for optimizing the fabrication of high-quality perovskite films. J. Am. Chem. Soc. 138(31), 9919–9926 (2016). https://doi.org/10.1021/jacs.6b04924

    Article  CAS  Google Scholar 

  27. N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 183% and best efficiency of 197% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930

    Article  CAS  Google Scholar 

  28. S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X.C. Zeng, J. Huang, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141(14), 5781–5787 (2019). https://doi.org/10.1021/jacs.8b13091

    Article  CAS  Google Scholar 

  29. H.S. Kim, A. Hagfeldt, N.G. Park, Morphological and compositional progress in halide perovskite solar cells. Chem. Commun. (Camb) 55(9), 1192–1200 (2019). https://doi.org/10.1039/c8cc08653b

    Article  CAS  Google Scholar 

  30. E. Aydin, M. De Bastiani, S. De Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), e1900428 (2019). https://doi.org/10.1002/adma.201900428

    Article  CAS  Google Scholar 

  31. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Horantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, H.J. Snaith, Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015). https://doi.org/10.1038/ncomms7142

    Article  CAS  Google Scholar 

  32. N. Awol, C. Amente, G. Verma, J.Y. Kim, Morphology and surface analyses for CH3NH3PbI3 perovskite thin films treated with versatile solvent-antisolvent vapors. RSC Adv. 11(29), 17789–17799 (2021). https://doi.org/10.1039/d1ra02645c

    Article  CAS  Google Scholar 

  33. H. Wang, J. Zhang, Methylammonium chloride additive in lead iodide optimizing the crystallization process for efficient perovskite solar cells. Int. J. Photoenergy (2022). https://doi.org/10.1155/2022/5288400

    Article  Google Scholar 

  34. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.-B. Cheng, J. Zhong, A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017). https://doi.org/10.1039/c7ee02634j

    Article  CAS  Google Scholar 

  35. H. Wang, H. Liu, Z. Dong, T. Song, W. Li, L. Zhu, Y. Bai, H. Chen, Size mismatch induces cation segregation in CsPbI3: forming energy level gradient and 3D/2D heterojunction promotes the efficiency of carbon-based perovskite solar cells to over 15%. Nano Energy 89, 106411 (2021). https://doi.org/10.1016/j.nanoen.2021.106411

    Article  CAS  Google Scholar 

  36. L.K. Ono, S.F. Liu, Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. Engl. 59(17), 6676–6698 (2020). https://doi.org/10.1002/anie.201905521

    Article  CAS  Google Scholar 

  37. P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. X-ray diffraction methods in polymer science, 1969

  38. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  39. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1956)

    Google Scholar 

  40. C. Xu, Z. Zhang, Y. Hu, Y. Sheng, P. Jiang, H. Han, J. Zhang, Printed hole-conductor-free mesoscopic perovskite solar cells with excellent long-term stability using PEAI as an additive. J. Energy Chem. 27(3), 764–768 (2018). https://doi.org/10.1016/j.jechem.2018.01.030

    Article  Google Scholar 

  41. J. Li, M. Wu, G. Yang, D. Zhang, Z. Wang, D. Zheng, J. Yu, Bottom-up passivation effects by using 3D/2D mix structure for high performance p-i-n perovskite solar cells. Sol. Energy 205, 44–50 (2020). https://doi.org/10.1016/j.solener.2020.05.042

    Article  CAS  Google Scholar 

  42. H. Wang, H. Liu, Z. Dong, X. Wei, Y. Song, W. Li, L. Zhu, Y. Bai, H. Chen, Extracting ammonium halides by solvent from the hybrid perovskites with various dimensions to promote the crystallization of CsPbI3 perovskite. Nano Energy 94, 106925 (2022). https://doi.org/10.1016/j.nanoen.2022.106925

    Article  CAS  Google Scholar 

  43. T. Stergiopoulos, S. Karakostas, P. Falaras, Comparative studies of substituted ruthenium(II)-pyrazoyl-pyridine complexes with classical N3 photosensitizer: the influence of -NCS dye ligands on the efficiency of solid-state nanocrystalline solar cells. J. Photochem. Photobiol. A 163(3), 331–340 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.002

    Article  CAS  Google Scholar 

  44. X. Liu, Z. Liu, B. Sun, X. Tan, H. Ye, Y. Tu, T. Shi, Z. Tang, G. Liao, 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy 50, 201–211 (2018). https://doi.org/10.1016/j.nanoen.2018.05.031

    Article  CAS  Google Scholar 

  45. Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17(5), 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4

    Article  CAS  Google Scholar 

  46. Q. Han, S. Yang, L. Wang, F. Yu, C. Zhang, M. Wu, T. Ma, The sulfur-rich small molecule boosts the efficiency of carbon-based CsPbI2Br perovskite solar cells to approaching 14%. Sol. Energy 216, 351–357 (2021). https://doi.org/10.1016/j.solener.2021.01.030

    Article  CAS  Google Scholar 

  47. Z. Zhao, F. Gu, H. Rao, S. Ye, Z. Liu, Z. Bian, C. Huang, Metal halide perovskite materials for solar cells with long-term stability. Adv. Energy Mater. 9(3), 1802671 (2019). https://doi.org/10.1002/aenm.201802671

    Article  CAS  Google Scholar 

  48. V.L. Pool, A. Gold-Parker, M.D. McGehee, M.F. Toney, Chlorine in PbCl2-derived hybrid-perovskite solar absorbers. Chem. Mater. 27(21), 7240–7243 (2015). https://doi.org/10.1021/acs.chemmater.5b03581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21875223), and the Open Foundation of Key Laboratory of Semiconductor Materials Science Institute of Semiconductors, Chinese Academy of Sciences (Grant No. KLSMS-1901).

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 21875223), Open Foundation of Key Laboratory of Semiconductor Materials Science Institute of Semiconductors, Chinese Academy of Sciences (Grant No. KLSMS-1901).

Author information

Authors and Affiliations

Authors

Contributions

TZ: investigation, writing original draft, visualization. KT: methodology, carrying out measurements. ST: methodology. WS: project administration. WX: project administration. JD: resources. HL: resources. JX: resources. HH: conceptualization, methodology, writing—review and editing.

Corresponding author

Correspondence to Huiying Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3548 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, T., Tang, K., Tang, S. et al. Additives and interface engineering facilitate the fabrication of high-efficiency perovskite solar cells in ambient air-processed. J Mater Sci: Mater Electron 34, 1055 (2023). https://doi.org/10.1007/s10854-023-10417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10417-7

Navigation