Skip to main content
Log in

Charge transfer enhancement of TiO2/perovskite interface in perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the conventional perovskite solar cells (PSCs) structure, TiO2 is the most commonly used electron transport layer (ETL) as it has good energy-level matching with perovskite layer. However, oxygen vacancy defects will appear when TiO2 is exposed to ultraviolet light for a long time, which would reduce its carrier extraction ability. Here, we report a simple and effective interface engineering method for TiO2 ETL to achieve a highly efficient PSCs. An ultra-thin [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer is used to modify the mesoporous TiO2/perovskite layer interface. The PCBM effectively passivates defects on the TiO2 surface, promotes the extraction of electrons, and improves the quality of the perovskite film. Finally, a high efficiency of 16.4% was achieved for the modified device, much higher than 13.5% of the reference devices. After storing for 12 days in an atmosphere with an air humidity of 30 ± 5%, the efficiency of the PSCs maintains more than 60% of its initial level. This strategy is beneficial to enhance the efficiency and working stability of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified by different concentrations of PCBM

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Su, C. Zhang, D. Chen, H. Dong, S. Pang, W. Zhu, H. Xi, G. Lu, J. Zhang, Y. Hao, Sol. Energy Mat. Sol. C 208 (2020)

  2. J. Liu, X. Yin, Y. Guo, M. Que, W. Que, J. Power Sources 461 (2020)

  3. E. Bi, H. Chen, F. Xie, Y. Wu, A. Islam, M. Gratzel, X. Yang, L. Han, Nat. Commun. 8, 15330 (2017)

    Article  CAS  Google Scholar 

  4. J. Tao, N. Ali, K. Chen, Z. Huai, Y. Sun, G. Fu, W. Kong, S. Yang, J. Mater. Chem. A. 7, 1349 (2019)

    Article  CAS  Google Scholar 

  5. E.M. Hutter, M.C. Gelvez-Rueda, A. Osherov, V. Bulovic, F.C. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16, 115 (2017)

    Article  CAS  Google Scholar 

  6. C.S. Ponseca Jr., T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, V. Sundstrom, J. Am. Chem. Soc. 136, 5189 (2014)

    Article  CAS  Google Scholar 

  7. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  8. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  9. J. Xi, K. Xi, A. Sadhanala, C.J. Harris, X. Hou, R.V. Kumar, Z. Wu, Nano Energy 56, 741 (2019)

    Article  CAS  Google Scholar 

  10. M.M. Lee, J. Teuscher, T. Miyasaka, H.J. Snaith Science 338, 643 (2012)

  11. J. Song, G.R. Li, K. Xi, B. Lei, X.P. Gao, R.V. Kumar, J. Mat. Chem. A 2 (2014)

  12. J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X.Q. Gu, Y.H. Qiang, J. Alloys Compd. 694, 1232 (2017)

    Article  CAS  Google Scholar 

  13. Q. Qiu, J. Mou, J. Song, Y. Qiang, J. Electron. Mater. 49, 6300 (2020)

    Article  CAS  Google Scholar 

  14. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014)

    Article  CAS  Google Scholar 

  15. W.S. Yang, J.H. Noh, N.J. Jeon, J. Seo, S.I. Seok, Science 348, 1234 (2015)

    Article  CAS  Google Scholar 

  16. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Q. Ye, X. Li, Z. Yin, J. You, Nat Photon. 13, 460 (2019)

    Article  CAS  Google Scholar 

  17. NREL, Best research cell efficiencies, https://www.nrel.gov/pv/cell-efficiency.html, Accessed December 2020.

  18. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  CAS  Google Scholar 

  19. F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, NPJ. Flex. Electron 2 (2018)

  20. J. Song, L. Zhao, S. Huang, X. Yan, Q. Qiu, Y. Zhao, L. Zhu, Y. Qiang, H. Li, G. Li, Chemsuschem 14, 1396 (2021)

    Article  CAS  Google Scholar 

  21. R. Jeyakumar, A. Bag, R. Nekovei, R. Radhakrishnan, J. Electron. Mater. 49, 3533 (2020)

    Article  CAS  Google Scholar 

  22. C. Zhen, T. Wu, R. Chen, L. Wang, G. Liu, H.-M. Cheng, ACS Sustain. Chem. Eng. 7, 4586 (2019)

    Article  CAS  Google Scholar 

  23. Y. Ma, K. Deng, B. Gu, F. Cao, H. Lu, Y. Zhang, L. Li, Adv. Mater. Interfaces 3, (2016)

  24. W. Chen, X. Yin, M. Que, H. Xie, J. Liu, C. Yang, Y. Guo, J. Power, Sources 412, 118 (2019)

    Article  CAS  Google Scholar 

  25. D. Chen, A. Su, X. Li, S. Pang, W. Zhu, H. Xi, J. Chang, J. Zhang, C. Zhang, Y. Hao, Sol Energy 188, 239 (2019)

    Article  CAS  Google Scholar 

  26. Q. Jiang, X. Zhang, J. You, Small, e1801154 (2018)

  27. C. Sun, Z. Wu, H-L. Yip, H. Zhang, X-F. Jiang, Q. Xue, Z. Hu, Z. Hu, Y. Shen, M. Wang, F. Huang, Y. Cao, Adv. Energy. Mater. 6 (2016)

  28. L. Xu, C. Li, Y. Zhong, Z. Pang, W. Wu, Sol Energy 187, 352 (2019)

    Article  CAS  Google Scholar 

  29. D. Chen, T. Liu, Y. Zuo, X. Zou, J. Zheng, B. Cheng, Org. Electron 77 (2020)

  30. X. Zhang, Y. Wu, Y. Huang, Z. Zhou, S. Shen, J. Alloys Compd. 681, 191 (2016)

    Article  CAS  Google Scholar 

  31. N. Wang, T.K. Siu, Scand. Act. J. 2020, 419 (2019)

    Article  Google Scholar 

  32. Q. Dong, C.H.Y. Ho, H. Yu, A. Salehi, F. So, Chem. Mater. 31, 6833 (2019)

    Article  CAS  Google Scholar 

  33. T.H. Han, S. Tan, J. Xue, L. Meng, J.W. Lee, Y. Yang, Adv. Mater. 31, e1803515 (2019)

  34. S.F. Shaikh, H.-C. Kwon, W. Yang, R.S. Mane, J. Moon, J. Alloys Compd. 738, 405 (2018)

    Article  CAS  Google Scholar 

  35. J. Zhao, Y. Zhang, Q. Zhang, X. Zhao, B. Li, J. Zhang, Z. Zhu, J. Liu, Q. Liu, Solar RRL 4 (2020)

  36. J. Ma, J. Chang, Z. Lin, X. Guo, L. Zhou, Z. Liu, H. Xi, D. Chen, C. Zhang, Y. Hao J. Phys. Chem. C 122, 1044 (2018)

  37. J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu, Y. Leprince-Wang, D. Yu, Q. Zhao, Nano Energy 26, 139 (2016)

    Article  CAS  Google Scholar 

  38. A.-N. Cho, I.-H. Jang, J.-Y. Seo, N.-G. Park, J. Mater. Chem. A 6, 18206 (2018)

    Article  CAS  Google Scholar 

  39. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, A.D. Mohite, Science 347, 522 (2015)

    Article  CAS  Google Scholar 

  40. K. Wang, C. Liu, P. Du, L. Chen, J. Zhu, A. Karim, X. Gong, Org. Electron. 21, 19 (2015)

    Article  Google Scholar 

  41. J. Xi, Z. Wu, H. Dong, B. Xia, F. Yuan, B. Jiao, L. Xiao, Q. Gong, X. Hou, Nanoscale 7, 10699 (2015)

    Article  CAS  Google Scholar 

  42. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial supports from Fundamental Research Funds for the Central Universities (2018QNA06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Song or Yinghuai Qiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, M., Qiu, Q. et al. Charge transfer enhancement of TiO2/perovskite interface in perovskite solar cells. J Mater Sci: Mater Electron 32, 22936–22943 (2021). https://doi.org/10.1007/s10854-021-06778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06778-6

Navigation