Skip to main content
Log in

Synthesis and characterization of l-asparagine monohydrate potassium dichromate (LAMPDC): novel material for optical limiting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A semi-organic nonlinear optical single crystal known as l-asparagine monohydrate potassium dichromate (LAMPDC) has been created and formed in an aqueous solution using a slow evaporation process at room temperature. Details on the crystal structure were discovered using single-crystal XRD and it was found to be (LAMPDC) crystallized in an orthorhombic system with space group P212121. By using FT-IR analysis, the coordination of functional groups in the formed crystal was discovered. The optical bandgap energy Eg was assessed and the UV-absorption measurements demonstrate the crystal’s transparency in the visible region and a lower cutoff wavelength was found to be 253 nm (4.9 eV) and 366 nm (3.38 eV). The luminescence behavior of LAMPDC has been analyzed by fluorescence (FL) spectral study. The produced crystals were subjected to the Vickers microhardness test, which allowed for the evaluation of the Vickers hardness number (Hv), work-hardening coefficient (n), yield strength (σy), and stiffness constant C11. Various frequencies between 50 Hz and 20 MHz have been used to determine the dielectric behavior of LAMPDC. The surface morphology of the as-grown crystal was determined using the SEM technique. The laser-induced damage threshold value was found to be 4.79 times higher than that of KDP. In comparison with KH2PO4, the grown sample has an SHG efficiency that is 0.59 times higher. Using the Z-scan method with a nano-pulsed Nd:YAG laser, the crystal’s third-order nonlinear optical properties are investigated. The substance exhibits sequential two-photon absorption or an excited state absorption. LAMPDC is a possible contender for optical limiting devices due to its higher nonlinear absorption coefficient (1.73 × 10−10 m/W) and lower onset optical limiting threshold (1.42 × 1012 W/m2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.S. Chemla (ed.), Nonlinear Optical Properties of Organic Molecules and Crystals V1, vol. 1 (Elsevier, Amsterdam, 2012)

  2. H.S. Nalwa, Organometallic materials for nonlinear optics. Appl. Organomet. Chem. 5(5), 349–377 (1991)

    Article  CAS  Google Scholar 

  3. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, vol. 1 (Wiley, New York, 1991)

    Google Scholar 

  4. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992), p.155

    Google Scholar 

  5. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, Hoboken, 2019)

    Google Scholar 

  6. S. Zongo, A.P. Kerasidou, B.T. Sone, A. Diallo, P. Mthunzi, K. Iliopoulos, M. Nkosi, M. Maaza, B. Sahraoui, Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye. Appl. Surf. Sci. 340, 72–77 (2015). https://doi.org/10.1016/j.apsusc.2015.02.161

    Article  CAS  Google Scholar 

  7. N. Saravanan, V. Ravisankar, V. Chithambaram, Growth and characterization of novel semi-organic nonlinear optical urea lead acetate single crystal by solution growth technique. J. Mater. Sci.: Mater. Electron. 29, 5009–5013 (2018). https://doi.org/10.1007/s10854-017-8462-5

    Article  CAS  Google Scholar 

  8. F.Q. Meng, M.K. Lu, Z.H. Yang, H. Zeng, Thermal and crystallographic properties of a new NLO material, urea-(d) tartaric acid single crystal. Mater. Lett. 33, 5–6 (1998). https://doi.org/10.1016/S0167-577X(97)00113-4

    Article  Google Scholar 

  9. R. Rajasekaran, P.M. Ushasree, R. Jayavel, P. Ramasamy, Growth and characterization of zinc thiourea chloride (ZTC): a semiorganic nonlinear optical crystal. J. Cryst. Growth 229, 1–4 (2001). https://doi.org/10.1016/S0022-0248(01)01229-5

    Article  Google Scholar 

  10. E. Ilango, R. Rajasekaran, K. Shankar, S. Krishnan, V. Chithambaram, Synthesis, growth and characterization of non linear optical Bisthiourea ammonium chloride single crystals by slow evaporation technique. Opt. Mater. 37, 666–670 (2014). https://doi.org/10.1016/j.optmat.2014.08.011

    Article  CAS  Google Scholar 

  11. A. Selvam, S. Pandi, S. Selvakumar, S. Srinivasan, Growth and characterization of urea citric acid (UCA) single crystal by slow evaporation process. J. Appl. Sci. Res. 4, 2474–2478 (2012). https://doi.org/10.1016/j.matpr.2019.06.587

    Article  CAS  Google Scholar 

  12. D. Kalaiselvi, R. Mohan Kumar, R. Jayavel, Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: l-lysine hydrochloride dihydrate. Mater. Res. Bull. 43(7), 1829–1835 (2008). https://doi.org/10.1016/j.materresbull.2007.07.004

    Article  CAS  Google Scholar 

  13. K. Thukral, N. Vijayan, A. Krishna, B. Singh, R. Kant, V. Jayaramakrishnan, M.S. Jayalakshmy, M. Kaur, In-depth behavioral study of l-prolinium trichloroacetate single crystal: an efficient candidate for NLO applications. Arab. J. Chem. 12(8), 4887–4896 (2019). https://doi.org/10.1016/j.arabjc.2016.09.011

    Article  CAS  Google Scholar 

  14. N. Numan, S. Jeyaram, K. Kaviyarasu, P. Neethling, J. Sackey, C.L. Kotsedi, M. Akbari et al., On the remarkable nonlinear optical properties of natural tomato lycopene. Sci. Rep. 12(1), 9078 (2022). https://doi.org/10.1038/s41598-022-12196-3

    Article  CAS  Google Scholar 

  15. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  CAS  Google Scholar 

  16. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  CAS  Google Scholar 

  17. S. Natarajan, M. Umamaheswaran, J. Kalyana Sundar, J. Suresh, S.A. Martin Britto Dhas, Structural, spectroscopic and nonlinear optical studies on a new efficient organic donor–acceptor crystal for second harmonic generation: l-threoninium picrate. Spectrochim. Acta A 77(1), 160–163 (2010). https://doi.org/10.1016/j.saa.2010.04.044

    Article  CAS  Google Scholar 

  18. G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger, Chromium compounds. Ullmanns Encycl. Ind. Chem. (2005). https://doi.org/10.1002/14356007.a07%20067

    Article  Google Scholar 

  19. P. Jayaprakash, P. Sangeetha, C. Rathika Thaya Kumari, I. Baskaran, M.L. Caroline, Growth and characterization of l-asparagine monohydrate admixtured dl-mandelic acid nonlinear optical single crystal. J. Mater. Sci.: Mater. Electron. 28(24), 18787–18794 (2017). https://doi.org/10.1007/s10854-017-7828-z

    Article  CAS  Google Scholar 

  20. F. Yogam, I. Vetha Potheher, A. Cyrac Peter, S. Tamilselvan, M. Vimalan, P. Sagayaraj, Growth and characterization of organic nonlinear optical single crystal of l-asparaginium picrate (LASP). Arch. Appl. Sci. Res. 3(1), 267–276 (2011)

    CAS  Google Scholar 

  21. M. Shakir, V. Ganesh, M.A. Wahab, G. Bhagavannarayana, K.K. Rao, Structural, optical and mechanical studies on pure and Mn2+ doped l-asparagine monohydrate single crystals. Mater. Sci. Eng. B 172(1), 9–14 (2010). https://doi.org/10.1016/j.mseb.2010.04.004

    Article  CAS  Google Scholar 

  22. S. Masilamani, P. Ilayabarathi, P. Maadeswaran, J. Chandrasekaran, K. Tamilarasan, Synthesis, growth and characterization of a novel semiorganic nonlinear optical single crystal: l-asparagine cadmium chloride monohydrate. Optik 123(14), 1304–1306 (2012). https://doi.org/10.1016/j.ijleo.2011.07.063

    Article  CAS  Google Scholar 

  23. J.J. Verbist, M.S. Lehmann, T.F. Koetzle, W.C. Hamilton, Precision neutron diffraction structure determination of protein and nucleic acid components. VI. The crystal and molecular structure of the amino acid l-asparagine monohydrate. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 28(10), 3006–3013 (1972). https://doi.org/10.1107/S0567740872007368

    Article  CAS  Google Scholar 

  24. D. Vanitha, S. Suresh Kumar, S. Athimoolam, S. Asath Bahadur, Growth and characterization of K2ZnxNi1–x(SO4)2·6H2O mixed crystals for UV filters. Optik 126(23), 4553–4556 (2015). https://doi.org/10.1016/j.ijleo.2015.08.074

    Article  CAS  Google Scholar 

  25. M. Nageshwari, C. Rathika Thaya Kumari, P. Sangeetha, G. Vinitha, M.L. Caroline, Third order nonlinear optical, spectral, dielectric, laser damage threshold, and photo luminescence characteristics of an efficacious semiorganic acentric crystal: l-ornithine monohydrochloride. Chin. J. Phys. 56(2), 502–519 (2018). https://doi.org/10.1016/j.cjph.2018.02.003

    Article  CAS  Google Scholar 

  26. P. Jayaprakash, P. Sangeetha, C. Rathika Thaya Kumari, M.L. Caroline, Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of l-methionine admixtured d-mandelic acid single crystal: a promising material for nonlinear optical applications. Phys. B: Condens. Matter 518, 1–12 (2017). https://doi.org/10.1016/j.physb.2017.05.017

    Article  CAS  Google Scholar 

  27. M. Meena, R.S. Sundararajan, E. Manikandan, M. Shalini, Diffractional, optical, electrical, NLO and surface studies of l-asparagine monohydrate lithium sulphate (LAMLS) single crystals. J. Mater. Sci.: Mater. Electron. 33(23), 18846–18857 (2022). https://doi.org/10.1007/s10854-022-08734-4

    Article  CAS  Google Scholar 

  28. T. Suresh, S. Vetrivel, S. Gopinath, E. Vinoth, A new NLO material: l-asparagine thiocyanate (LATC) for opto-electronic applications. Chin. J. Phys. 57, 136–145 (2019). https://doi.org/10.1016/j.cjph.2018.11.022

    Article  CAS  Google Scholar 

  29. F. Yogam, I. Vetha Potheher, R. Jeyasekaran, M. Vimalan, M. Antony Arockiaraj, P. Sagayaraj, Growth, thermal, and optical properties of l-asparagine monohydrate NLO single crystal. J. Therm. Anal. Calorim. 114(3), 1153–1159 (2013). https://doi.org/10.1007/s10973-013-3138-8

    Article  CAS  Google Scholar 

  30. T. Vela, Growth of l-asparagine sodium chloride acetate (LASCA) crystal and its studies such as structural, optical, mechanical, thermal and dielectric properties. Arch. Phys. Res. 5(3), 49–58 (2014)

    CAS  Google Scholar 

  31. S. Manikandan, R. Mahalakshmi, P. Krishnan, F. Yogam, P. Rajesh, Growth, structural, optical, thermal and dielectric properties of l-asparagine monohydrate admixtured l-thiomalic acid single crystal. Optik 127(13), 5316–5321 (2016). https://doi.org/10.1016/j.ijleo.2016.03.036

    Article  CAS  Google Scholar 

  32. S. Masilamani, A. Mohamed Musthafa, Chemical analysis, FTIR and microhardness study to find out non linear optical property of l-asparagine lithium chloride: a semi organic crystal. Microchem. J. 110, 749–752 (2013). https://doi.org/10.1016/j.microc.2013.09.003

    Article  CAS  Google Scholar 

  33. T. Suresh, S. Vetrivel, S. Gopinath, E. Vinoth, Investigation on synthesis, laser damage threshold, and NLO properties of l-asparagine thioacetamide single crystal for photonic device applications. J. Mater. Sci.: Mater. Electron. 31(16), 13310–13320 (2020). https://doi.org/10.1007/s10854-020-03884-9

    Article  CAS  Google Scholar 

  34. A.S.I.J. Sinthiya, P. Selvarajan, Growth, XRD, spectroscopic, hardness and SHG studies of l-asparagine monohydrate single crystals, vol. 3, p. 306–316 (2013)

  35. S. Kulshrestha, A.K. Shrivastava, Crystal growth and characterization of new semi-organic nonlinear optical single crystals, in AIP Conference Proceedings, vol. 1728, no. 1, p. 020639. (AIP Publishing LLC, 2016). https://doi.org/10.1063/1.4946690

  36. R. Surekha, R. Gunaseelan, P. Sagayaraj, K. Ambujam, l-phenylalanine l-phenylalaninium bromide—a new nonlinear optical material. CrystEngComm 16(34), 7979–7989 (2014). https://doi.org/10.1039/C4CE00718B

    Article  CAS  Google Scholar 

  37. P. Koteeswari, S. Suresh, P. Mani, Crystal growth, optical and dielectric properties of L-histidine hydrochloride monohydrate nonlinear optical single crystal. JMMCE. 11(08), 813–816 (2012). https://doi.org/10.4236/ijg.2011.23026

    Article  Google Scholar 

  38. R. Ramesh Babu, N. Vijayan, R. Gopalakrishnan, P. Ramasamy, Growth and characterization of l-lysine monohydrochloride dihydrate (L‐LMHCl) single crystal. Cryst. Res. Technol.: J. Exp. Ind. Crystallogr. 41(4), 405–410 (2006). https://doi.org/10.1002/crat.200510594

    Article  CAS  Google Scholar 

  39. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63(2), 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  40. J. Gong, H. Miao, Z. Zhao, Z. Guan, Load-dependence of the measured hardness of Ti (C, N)-based cermets. Mater. Sci. Eng. A 303, 1–2 (2001). https://doi.org/10.1016/S0921-5093(00)01845-1

    Article  Google Scholar 

  41. B. Basu, N.K. Mukhopadhyay, Understanding the mechanical properties of hot pressed Ba-doped S-phase SiAlON ceramics. J. Eur. Ceram. Soc. 29(4), 801–811 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.005

    Article  CAS  Google Scholar 

  42. S. Senthil, S. Pari, P. Sagayaraj, J. Madhavan, Studies on the electrical, linear and nonlinear optical properties of meta nitroaniline, an efficient NLO crystal. Phys. B: Condens. Matter 404, 12–13 (2009). https://doi.org/10.1016/j.physb.2009.01.042

    Article  CAS  Google Scholar 

  43. T. Suresh, S. Vetrivel, S. Gopinath, R.U. Mullai, A new metal-organic nonlinear optical material: l-asparagine indium chloride (LAIn) for photonics application. Chin. J. Phys. 56(6), 2773–2781 (2018). https://doi.org/10.1016/j.cjph.2018.10.007

    Article  CAS  Google Scholar 

  44. T. Suresh, S. Vetrivel, S. Gopinath, R. Arul Jothi, A new organic nonlinear optical material: l-asparagine cetrimonium bromide single crystal for photonic applications. Chem. Data Collect. 21, 100232 (2019). https://doi.org/10.1016/j.cdc.2019.100232

    Article  CAS  Google Scholar 

  45. P. Jayaprakash, M.P. Mohamed, M.L. Caroline, Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-alanine dl-mandelic acid single crystal. J. Mol. Struct. 1134, 67–77 (2017). https://doi.org/10.1016/j.molstruc.2016.12.026

    Article  CAS  Google Scholar 

  46. M. Shalini, R.S. Sundararajan, E. Manikandan, M. Meena, B. Samuel Ebinezer, T.C.S. Girisun, R. Natarajan, Growth and characterization of l-methionine barium bromide (LMBB) semi-organic crystal for optical limiting applications. Optik 278, 170705 (2023). https://doi.org/10.1016/j.ijleo.2023.170705

    Article  CAS  Google Scholar 

  47. N.L. Boling, G. Dub, Laser-induced inclusion damage at surfaces of transparent dielectrics. Appl. Phys. Lett. 23, 658–660 (1973). https://doi.org/10.1063/1.1654781

    Article  CAS  Google Scholar 

  48. A. Vijayalakshmi, B. Vidyavathy, G. Vinitha, Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: a new organic crystal for optical limiting applications. J. Cryst. Growth 448, 82–88 (2016). https://doi.org/10.1016/j.jcrysgro.2016.05.002

    Article  CAS  Google Scholar 

  49. M. Meena, B. Samuel Ebinezer, E. Manikandan, R.S. Sundararajan, M. Shalini, R. Natarajan, Synthesis and optical characterizations of l-phenylalanine lithium sulphate (LPLS) semi-organic single crystal. J. Mater. Sci.: Mater. Electron. 34(5), 395 (2023). https://doi.org/10.1007/s10854-023-09820-x

    Article  CAS  Google Scholar 

  50. S. Sudhahar, M.K. Kumar, A. Silambarasan, R. Muralidharan, R.M. Kumar, Studies on structural, spectral, and optical properties of organic nonlinear optical single crystal: 2-amino-4, 6-dimethylpyrimidinium p-hydroxybenzoate. J. Mater. (2013). https://doi.org/10.1155/2013/539312

    Article  Google Scholar 

  51. M.R. Jagadeesh, H.M. Suresh Kumar, R. Ananda Kumari, Growth and characterization of NLO crystal: l-leucine phthalic acid potassium iodide. Mater. Sci. Pol. 33(3), 529–536 (2015). https://doi.org/10.1515/msp-2015-0063

    Article  CAS  Google Scholar 

  52. S.J. Nandre, S.J. Shitole, R.R. Ahire, Study of growth, EDAX, optical properties and surface morphology of zinc tartrate crystals. J. Nano- Electron. 4(4), 04013 (2012)

    Google Scholar 

  53. S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968). https://doi.org/10.1063/1.1656857

    Article  CAS  Google Scholar 

  54. M.L. Caroline, S. Vasudevan, Growth and characterization of l-phenylalanine nitric acid, a new organic nonlinear optical material. Mater. Lett. 63(1), 41–44 (2009). https://doi.org/10.1016/j.matlet.2008.08.059

    Article  CAS  Google Scholar 

  55. N. Vijayan, S. Rajasekaran, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, M. Palanichamy, P. Ramasamy, Growth and characterization of nonlinear optical amino acid single crystal: l-alanine. Cryst. Growth Des. 6(11), 2441–2445 (2006)

    Article  CAS  Google Scholar 

  56. P. Jayaprakash, M. Peer Mohamed, P. Krishnan, M. Nageshwari, G. Mani, M. Lydia Caroline, Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: l-phenylalanine dl-mandelic acid. Phys. B 503, 25–31 (2016). https://doi.org/10.1016/j.physb.2016.09.010

    Article  CAS  Google Scholar 

  57. K.S.S. Babu, M. Anbuchezhiyan, M.G. Mohamed, P.A. Mahaboob, R. Mohan, Growth, optical, dielectric, thermal and mechanical properties of pure and Sr(II)-doped l-asparagine monohydrate single crystals. Arch. Phys. Res. 4(2), 31–39 (2013)

    Google Scholar 

  58. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14(17), 955–957 (1989). https://doi.org/10.1364/OL.14.000955

    Article  CAS  Google Scholar 

  59. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  60. X.B. Sun, X.Q. Wang, Q. Ren, G.H. Zhang, H.L. Yang, L. Feng, Third-order nonlinear optical properties of bis(tetrabutylammonium) bis(4,5-dithiolato-1,3-dithiole-2-thione) copper. Mater. Res. Bull. 41(1), 177–182 (2006). https://doi.org/10.1016/j.materresbull.2005.07.021

    Article  CAS  Google Scholar 

  61. A. Kiran, D. John, K. Udayakumar, A.V. Chandrasekharan, Adhikari, H.D. Shashikala, Z-scan and degenerate four wave mixing studies on newly synthesized copolymers containing alternating substituted thiophene and 1,3,4-oxadiazole units. J. Phys. B 39, 18 (2006)

    Article  Google Scholar 

  62. S. Dhanuskodi, T.C. Sabari Girisun, N. Smijesh, Two-photon absorption and optical limiting in tristhiourea cadmium sulphate. Chem. Phys. Lett. 486, 1–3 (2010). https://doi.org/10.1016/j.cplett.2009.12.069

    Article  CAS  Google Scholar 

  63. S. Zongo, K. Sanusi, J. Britton, P. Mthunzi, T. Nyokong, M. Maaza, B. Sahraoui, Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique. Opt. Mater. 46, 270–275 (2015). https://doi.org/10.1016/j.optmat.2015.04.031

    Article  CAS  Google Scholar 

  64. K.K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H.S. Nagaraja, P. Poornesh, D. Kekuda, Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35(3), 431–439 (2013). https://doi.org/10.1016/j.optmat.2012.09.028

    Article  CAS  Google Scholar 

  65. R. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker Inc., New York, 1996)

  66. S. Zongo, M.S. Dhlamini, P.H. Neethling, A. Yao, M. Maaza, B. Sahraoui, Synthesis, characterization and femtosecond nonlinear saturable absorption behavior of copper phthalocyanine nanocrystals doped-PMMA polymer thin films. Opt. Mater. 50, 138–143 (2015). https://doi.org/10.1016/j.optmat.2015.10.013

    Article  CAS  Google Scholar 

  67. N.L. John, S. Abraham, D. Sajan, R. Philip, N. Joy, R. Chitra, Molecular structure, NLO properties and vibrational analysis of l-histidine tetra fluro borate by experimental and computational spectroscopic techniques. Spectrochim. Acta A 226, 117615 (2020). https://doi.org/10.1016/j.saa.2019.117615

    Article  CAS  Google Scholar 

  68. M. Shalini, R.S. Sundararajan, T.C. Girisun, E. Manikandan, M. Meena, Third order non-linear optical, diffractional, electrical, laser damage threshold, elemental and surface studies of l-methionine potassium hydrogen phthalate (LMKHP) single crystals. J. Mater. Sci.: Mater. Electron. 33(24), 19004–19018 (2022). https://doi.org/10.1007/s10854-022-08733-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the ACIC instrumentation center, St. Joseph’s College, Trichy—02 for FT-IR, UV–Vis–NIR, FL, Dielectrics, and Microhardness characterization facilities. Nanophotonics Laboratory, Bharathidasan University, Tiruchirappalli-620024, for Z-scan characterization, wish to thank Sophisticated Analytical Instrumentation Facility (SAIF) Indian Institute of Technology (IIT)—Madras for structural characterization. I extend my acknowledgment to Raman Research Park, SRM University Potheri Chennai—603 203 for Raman instrumentation facilities and Karunya University, Coimbatore, for SEM-EDAX facilities, and also thank the B.S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai—48 for LDT & NLO characterization facilities.

Funding

The authors have not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RN. The first draft of the manuscript was written by RN, BSE, RSS, TCSG, EM, MM, and MS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Natarajan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, R., Samuel Ebinezer, B., Sundararajan, R.S. et al. Synthesis and characterization of l-asparagine monohydrate potassium dichromate (LAMPDC): novel material for optical limiting applications. J Mater Sci: Mater Electron 34, 970 (2023). https://doi.org/10.1007/s10854-023-10408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10408-8

Navigation