Skip to main content
Log in

Rose petals bioinspired microstructure for flexible tactile electronic skin

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the sensitivity and accuracy of the flexible electronic skin, inspired by the micro-nano hierarchical structures on the surface of rose petals, we conducted a study on the high sensitivity of the flexible tactile electronic skin using a simple, efficient and low-cost two-step sacrificial template method, and successfully prepared a flexible capacitive sensor based on AgNWs/PVDF composite dielectric layer and PDMS microstructured electrode of the bionic rose petal. The results show that the sensitivity of the sensor is maximum when the AgNWs content is 30 wt.%, and the minimum detectable stress is 0.32 kPa−1, which is 1.6 times higher than that of the pure PVDF film as the dielectric layer, and the capacitance is up to 157.6 pF at this time. The capacitive flexible pressure sensor can easily load over 1000 times of stress loading/unloading (50 N), showing excellent cyclic stability. Based on the super hydrophobicity and high adhesion (Cassie impregnating state) brought by the petal effect, the PDMS microstructured flexible electrode can inhibit the growth of bacteria to a certain extent in cooperation with AgNWs/PVDF dielectric layer, while avoiding the deposition of liquid droplets in the dielectric layer, which provides a new idea to solve the problem of electronic skin failure caused by body fluid contact. It is of positive significance to achieve an efficient and simple strategy to solve the problems of low sensing sensitivity, long response time and poor stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Yogeswaran, W. Dang, W.T. Navaraj, D. Shakthivel, S. Khan, E.O. Polat, S. Gupta, H. Heidari, M. Kaboli, L. Lorenzelli, G. Cheng, R. Dahiya, Adv. Robot. (2015). https://doi.org/10.1080/01691864.2015.1095653

    Article  Google Scholar 

  2. J. Sun, H. Du, Z. Chen, L. Wang, G. Shen, Nano Res. (2021). https://doi.org/10.1007/s12274-021-3967-x

    Article  Google Scholar 

  3. L. Zhao, S. Yu, J. Li, Z. Song, M. Wu, X. Wang, X. Wang, Curr. Appl. Phys. (2021). https://doi.org/10.1016/j.cap.2021.07.014

    Article  Google Scholar 

  4. P. Tomoyuki Yokota, M. Zalar, H. Kaltenbrunner, N. Jinno, H. Matsuhisa, Y. Kitanosako, W. Tachibana, M. Yukita, T.S. Koizumi, Sci. Adv. (2016). https://doi.org/10.1126/sciadv.1501856

    Article  Google Scholar 

  5. Y. Kumaresan, O. Ozioko, R. Dahiya, IEEE Sens. J. (2021). https://doi.org/10.1109/jsen.2021.3055458

    Article  Google Scholar 

  6. L. Duan, D.R. D’Hooge, L. Cardon, Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2019.100617

    Article  Google Scholar 

  7. Y. Ma, W. Tong, W. Wang, Q. An, Y. Zhang, Compos. Sci. Technol. (2018). https://doi.org/10.1016/j.compscitech.2018.10.009

    Article  Google Scholar 

  8. R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia, A. Yang, S. Li, X. Xiao, Sens. Actuators A: Phys. (2021). https://doi.org/10.1016/j.sna.2020.112425

    Article  Google Scholar 

  9. S.H. Cho, S.W. Lee, S. Yu, H. Kim, S. Chang, D. Kang, I. Hwang, H.S. Kang, B. Jeong, E.H. Kim, S.M. Cho, K.L. Kim, H. Lee, W. Shim, C. Park, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b00398

    Article  Google Scholar 

  10. H.B. Choi, J. Oh, Y. Kim, M. Pyatykh, J. Chang Yang, S. Ryu, S. Park, ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c00267

    Article  Google Scholar 

  11. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqati, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials (Basel) (2019). https://doi.org/10.3390/nano9020202

    Article  Google Scholar 

  12. A.L. Kozlovskiy, M.V. Zdorovets, Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124444

    Article  Google Scholar 

  13. H. Kou, L. Zhang, Q. Tan, G. Liu, W. Lv, F. Lu, H. Dong, J. Xiong, Sens. Actuators A: Phys. (2018). https://doi.org/10.1016/j.sna.2018.05.015

    Article  Google Scholar 

  14. Y. Zhu, Y. Wu, G. Wang, Z. Wang, Q. Tan, L. Zhao, D. Wu, Org. Electron. (2020). https://doi.org/10.1016/j.orgel.2020.105759

    Article  Google Scholar 

  15. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, V.V. Oliynyk, A.V. Trukhanov, S.V. Trukhanov, M.O. Borovoy, P.O. Tesel’ko, V.L. Launets, O.A. Syvolozhskyi, K.A. Astapovich, Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01477-w

    Article  Google Scholar 

  16. A.V. Trukhanov, D.I. Tishkevich, S.V. Podgornaya, E. Kaniukov, M.A. Darwish, T.I. Zubar, A.V. Timofeev, E.L. Trukhanova, V.G. Kostishin, S.V. Trukhanov, Nanomaterials (2022). https://doi.org/10.3390/nano12050868

    Article  Google Scholar 

  17. Y. Zhu, Y. Deng, P. Yi, L. Peng, X. Lai, Z. Lin, Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900413

    Article  Google Scholar 

  18. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06226-5

    Article  Google Scholar 

  19. A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-05130-8

    Article  Google Scholar 

  20. R.E. El-Shater, H. El Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.166954

    Article  Google Scholar 

  21. T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.245

    Article  Google Scholar 

  22. A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01556-x

    Article  Google Scholar 

  23. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.09.172

    Article  Google Scholar 

  24. D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar, S.V. Trukhanov, J. Kohout, T. Kmječ, O. Yakovenko, L. Matzui, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.041

    Article  Google Scholar 

  25. D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar, S.V. Trukhanov, J. Kohout, T. Kmjec, O. Yakovenko, ACS Appl. Electron. Mater. (2021). https://doi.org/10.1021/acsaelm.0c01081

    Article  Google Scholar 

  26. X. Pang, Q. Zhang, Y. Shao, M. Liu, D. Zhang, Y. Zhao, Sens. (Basel) (2021). https://doi.org/10.3390/s21041130

    Article  Google Scholar 

  27. Z. Ma, W. Wang, D. Yu, Adv. Mater. Interfaces (2019). https://doi.org/10.1002/admi.201901704

    Article  Google Scholar 

  28. C. Gai, D. Li, X. Zhang, H. Zhang, N. Li, X. Zheng, D. Wu, J. Sun, Adv. Mater. Interfaces (2021). https://doi.org/10.1002/admi.202100632

    Article  Google Scholar 

  29. J. Shao, X. Chen, X. Li, H. Tian, C. Wang, B. Lu, Sci. China Technol. Sci. (2019). https://doi.org/10.1007/s11431-018-9386-9

    Article  Google Scholar 

  30. Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu, R. Sun, C.-P. Wong, Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104436

    Article  Google Scholar 

  31. K.H. Ha, H. Huh, Z. Li, N. Lu, ACS Nano (2022). https://doi.org/10.1021/acsnano.2c00308

    Article  Google Scholar 

  32. J. Yang, D. Tang, J. Ao, T. Ghosh, T.V. Neumann, D. Zhang, Y. Piskarev, T. Yu, V.K. Truong, K. Xie, Y.C. Lai, Y. Li, M.D. Dickey, Adv. Func. Mater. (2020). https://doi.org/10.1002/adfm.202002611

    Article  Google Scholar 

  33. V. Palaniappan, S. Masihi, M. Panahi, D. Maddipatla, A.K. Bose, X. Zhang, B.B. Narakathu, B.J. Bazuin, M.Z. Atashbar, IEEE Sens. J. (2020). https://doi.org/10.1109/jsen.2020.2989146

    Article  Google Scholar 

  34. S. Chun, I.Y. Choi, W. Son, G.Y. Bae, E.J. Lee, H. Kwon, J. Jung, H.S. Kim, J.K. Kim, W. Park, Adv. Func. Mater. (2018). https://doi.org/10.1002/adfm.201804132

    Article  Google Scholar 

  35. T.-I.L.D. Kwon, M.S. Kim, S. Kim, T.-S. Kim, I. Park, IEEE Xplore (2015). https://doi.org/10.1109/TRANSDUCERS.2015.7180920

    Article  Google Scholar 

  36. P. Wei, X. Guo, X. Qiu, D. Yu, Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab3695

    Article  Google Scholar 

  37. G. Reid, J.C. McCormack, O. Habimana, F. Bayer, C. Goromonzi, E. Casey, A. Cowley, S.M. Kelleher, Materials (Basel) (2021). https://doi.org/10.3390/ma14081910

    Article  Google Scholar 

  38. T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong, H. Ding, Y. Gu, Z. Liu, T. Zhang, Small (2016). https://doi.org/10.1002/smll.201600760

    Article  Google Scholar 

  39. R. Jiang, L. Hao, L. Song, L. Tian, Y. Fan, J. Zhao, C. Liu, W. Ming, L. Ren, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125609

    Article  Google Scholar 

  40. S. Chen, L. Yuan, Q. Li, J. Li, X. Zhu, Y. Jiang, O. Sha, X. Yang, J.H. Xin, J. Wang, F.J. Stadler, P. Huang, Small (2016). https://doi.org/10.1002/smll.201600587

    Article  Google Scholar 

  41. Z. Zhang, B. Shao, F. Wang, J. Pang, L. Su, Wood Res. (2021). https://doi.org/10.37763/wr.1336-4561/66.2.211220

    Article  Google Scholar 

  42. X. Hong, X. Gao, L. Jiang, J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja065537c

    Article  Google Scholar 

  43. L. Li, B. Zhou, G. Han, Y. Feng, C. He, F. Su, J. Ma, C. Liu, Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108229

    Article  Google Scholar 

  44. S.V. Trukhanov, V.V. Fedotova, A.V. Trukhanov, S.G. Stepin, H. Szymczak, Crystallogr. Rep. (2008). https://doi.org/10.1134/s1063774508070158

    Article  Google Scholar 

  45. A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03671-6

    Article  Google Scholar 

  46. X. Liang, S. Yu, R. Sun, S. Luo, J. Wan, S. Yu, R. Sun, S. Luo, X. Liang, J. Wan, Z. Zhuang, J. Mater. Res. (2012). https://doi.org/10.1557/jmr.2012.26

    Article  Google Scholar 

  47. Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang, N. Bai, M. Cai, L. Zhao, Y. Wang, J. Zhang, K. Chen, X. Wu, C. Yang, Y. Dai, Z. Zhang, C.F. Guo, Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-29093-y

    Article  Google Scholar 

  48. Z.-M. Dang, J.-P. Wu, H.-P. Xu, S.-H. Yao, M.-J. Jiang, J. Bai, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2770664

    Article  Google Scholar 

  49. S.V. Trukhanov, Phys. Solid State (2011). https://doi.org/10.1134/s1063783411090307

    Article  Google Scholar 

  50. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Sensors (2020). https://doi.org/10.3390/s20174851

    Article  Google Scholar 

Download references

Funding

This work was funded by the Heilongjiang Province Project (No. 217045418) and College Students’ Innovative Training Plan Program in Heilongjiang Province (No. x1021422004).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. XZ, CH and LG: contributed to the conception of the studyand the experiment performed; ZJ and MJ: contributed significantly to analysis and manuscript preparation; YC: performed the data analyses and wrote the manuscript; YJ, LW, XW, JL: helped perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lizhu Guan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Han, C., Guan, L. et al. Rose petals bioinspired microstructure for flexible tactile electronic skin. J Mater Sci: Mater Electron 34, 1029 (2023). https://doi.org/10.1007/s10854-023-10399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10399-6

Navigation