Skip to main content
Log in

Synthesis and electrochemical performances of PbGeO3/C as novel anode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, PbGeO3 nanorods were successfully prepared by a simple one-step hydrothermal method, and its morphology was regulated by adjusting the concentration of ethylenediamine (EDA) to form PbGeO3 with different morphology. Then pyrrole was used as the carbon source to synthesize PbGeO3/C composite. The structure and morphology of the samples were characterized by XRD, SEM and TEM. The C content of the composites (PbGeO3/C) was tested by thermogravimetry (TG). The constant current charge–discharge test shows that the charging platform of PbGeO3 material is between 0.5 and 0.7 V, and the electrochemical performance of the PbGeO3/C was significantly improved to be compared with pure PbGeO3. At a current density of 100 mA g−1, the discharge initial specific capacity for the PbGeO3/C was 1715.7 mAh g−1, and it could still maintain at 914 mAh g−1 after 150 cycles, and the rate performance is also significantly improved. And the electrochemical reaction mechanism was discussed by cyclic voltammetry (CV) method. The composite (PbGeO3/C) has hope to be used as anode material for lithium-ion battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Armand, J.M. Tarascon, Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  2. Y.N. Nuli, P. Zhang, Z.P. Guo, H.K. Liu, J. Electrochem. Soc. 155, A196 (2008)

    Article  CAS  Google Scholar 

  3. C.W. Babbitt, Sustainability perspectives on lithium-ion batteries[J]. Clean Technol. Environ. Policy 22(6), 1213–1214 (2020)

    Article  CAS  Google Scholar 

  4. J. Lu, D. Li, L. Li et al., Cobalt-doped Zn2GeO4 nanorods assembled into hollow spheres as high-performance anode materials for lithium-ion batteries[J]. J. Mater. Chem. A 6(14), 5926–5934 (2018)

    Article  CAS  Google Scholar 

  5. G. Shen, Z. Liu, P. Liu et al., Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium–sulfur batteries[J]. J. Mater. Chem. A 8(3), 1154–1163 (2020)

    Article  CAS  Google Scholar 

  6. Ji. Yi, Chad T. Jafvert, Fu. Zhao, Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds[J]. Resour. Conserv. Recycl. 170, 105551 (2021)

    Article  Google Scholar 

  7. M. Brian, T. Qinghua, G. Xueyi et al., Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review[J]. J. Power Sources 491, 229622 (2021)

    Article  Google Scholar 

  8. C. Liang, L. Weiwei, K. Shuai et al., A review on end-of-use management of spent lithium-ion batteries from sustainability perspective[J]. J. Manuf. Sci. Eng. 143, 1–35 (2021)

    Google Scholar 

  9. Dunn Jessica, Slattery Margaret, Kendall Alissa et al., Circularity of lithium-ion battery materials in electric vehicles [J]. Environ. Sci. Technol. 55(8), 5189–5198 (2021)

    Article  Google Scholar 

  10. K. Seoa, B. Jaeyeon, Y. Junsang et al., A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. J. Clean. Prod. 294, 126329 (2021)

    Article  Google Scholar 

  11. A. Mauger, C.M. Julien, M. Armand et al., Li (Ni, Co)PO4 as cathode materials for lithium batteries: will the dream come true?[J]. Curr. Opin. Electrochem. 6(1), 63–69 (2017)

    Article  CAS  Google Scholar 

  12. M. Cai, X. Sun, W. Chen et al., Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode[J]. J. Mater. Sci. 53(1), 749–758 (2018)

    Article  CAS  Google Scholar 

  13. M. Jahn, M. Sedlaříková, J. Vondrák, Thin layers of lead for use in lithium cells as the negative electrode[J]. ECS Trans. 70(1), 89 (2015)

    Article  CAS  Google Scholar 

  14. X. Lin, J. Shu, Wu. Kaiqiang et al., Improved electrochemical property of Pb(NO3)2 by carbon black, graphene and carbon nanotube[J]. Electrochim. Acta 137, 767–773 (2014)

    Article  CAS  Google Scholar 

  15. O.L.G. Alderman, A.C. Hannon, D. Holland et al., Structural origin of the weak germanate anomaly in lead germanate glass properties[J]. J. Am. Ceram. Soc. 105(2), 1010–1030 (2022)

    Article  CAS  Google Scholar 

  16. A.S. Gouveia-Neto, E.B. Costa, P.V. Santos, L.A. Bueno, S.J.L. Ribeiro, J. Appl. Phys. 94, 5678 (2003)

    Article  CAS  Google Scholar 

  17. M. Lenglet, C.K. Jorgensen, Chem. Phys. Lett. 185, 111 (1991)

    Article  CAS  Google Scholar 

  18. Amitava Choudhury et al., ChemInform abstract: two non-centrosymmetric cubic seleno-germanates related to CsCl-type structure: synthesis, structure, magnetic and optical properties [J]. ChemInform (2008). https://doi.org/10.1002/chin.200803020

    Article  Google Scholar 

  19. R. Yi, J.K. Feng, D.P. Lv, M.L. Gordin, S.R. Chen, D.W. Choi, D.H. Wang, Amorphous ZnGeO4 nanoparticles as anodes with high reversible capacityand long cycling life for Li-ion batteries. Nano Energy 2, 498–504 (2013)

    Article  CAS  Google Scholar 

  20. J. Feng et al., Low temperature synthesis of lead germanate (PbGeO3)/polypyrrole (PPy) nanocomposites and their lithium storage performance[J]. Mater. Res. Bull. 57, 238–242 (2014)

    Article  CAS  Google Scholar 

  21. W. Li, Y.x.Yin, S. Xin, W.G. Song, Y.G. Guo, Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a newclass of lithium ion batteryanode material. Energy Environ. Sci. 5, 8007–8013 (2012)

    Article  CAS  Google Scholar 

  22. J. Zhan, Y. Bando, J. Hu, L. Yin, X. Yuan, T. Sekiguchi, D. Golberg, Angew. Chem. Int. Ed. 45, 228 (2006)

    Article  CAS  Google Scholar 

  23. G.N. Suresh Babu, D. Suriyakumar, N. Kalaiselvi, Synthesis of phase-pure Cd2GeO4 /G nanorods for high capacity Na-ion battery anode[J]. J. Alloy. Compd. 851, 156894 (2021)

    Article  CAS  Google Scholar 

  24. J. Yuan et al., Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage[J]. Coll. Surf. A 555, 795–801 (2018)

    Article  CAS  Google Scholar 

  25. J. Lu, D. Li, L. Li et al., Cobalt-doped Zn 2 GeO 4 nanorods assembled into hollow spheres as high-performance anode materials for lithium-ion batteries[J]. J. Mater. Chem. A 6(14), 5926–5934 (2018)

    Article  CAS  Google Scholar 

  26. K. Chu, X. Zhang, Y. Yang et al., Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability[J]. Carbon 184, 277–286 (2021)

    Article  CAS  Google Scholar 

  27. F. Zheng, K. Chu, Y. Yang et al., Optimizing the interlayer spacing of heteroatom-doped carbon nanofibers toward ultrahigh potassium-storage performances[J]. ACS Appl. Mater. Interfaces. 14(7), 9212–9221 (2022)

    Article  CAS  Google Scholar 

  28. Ning Wang, Jie Ding, Guicun Li, Hongrui Peng, Synthesis and properties of PbGeO3 nanostructures. Cryst. Res. Technol. 45(3), 316–320 (2010)

    Article  CAS  Google Scholar 

  29. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei et al., Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material[J]. Int. J. Hydrogen Energy 44(43), 24005–24016 (2019)

    Article  CAS  Google Scholar 

  30. J. Wang, C. Feng, Z. Sun et al., In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries[J]. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

  31. J. Feng, L. Ci, Y. Qi et al., Low temperature synthesis of lead germanate (PbGeO3)/polypyrrole (PPy) nanocomposites and their lithiμm storage performance[J]. Mater. Res. Bull. 57, 238–242 (2014)

    Article  CAS  Google Scholar 

  32. W. Wang, Y. Yang, S. Yang et al., Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application[J]. Electrochim. Acta. 155, 297–304 (2015)

    Article  CAS  Google Scholar 

  33. H. Kanoh, Q. Feng, T. Hirotsu et al., AC impedance analysis for Li+ insertion of a Pt/λ-MnO2 electrode in an aqueous phase[J]. J. Electrochem. Soc. 143(8), 2610 (1996)

    Article  CAS  Google Scholar 

  34. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Metal oxides and oxysalts asanode materials for Li-ion batteries. Chem. Rev. 113, 5364–5457 (2013)

    Article  CAS  Google Scholar 

  35. P. Niu, Y. Yang, Z. Li et al., Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods[J]. Nano Res. 15(9), 8109–8117 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (2198073 and NSFC−U1903217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqi Feng.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ran, X., Chen, X. et al. Synthesis and electrochemical performances of PbGeO3/C as novel anode materials. J Mater Sci: Mater Electron 34, 977 (2023). https://doi.org/10.1007/s10854-023-10397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10397-8

Navigation