Skip to main content
Log in

Removal of arsenic from copper smelting wastewater using zinc slag to synthesize scorodite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Acidic arsenic-containing wastewater from copper smelting poses a potential threat to human and environmental safety due to its high toxicity, acidity, high volumes, and difficulty to be processed and utilized. This study proposed a technique to leach environmentally stable scorodite from wastewater using natural zinc slag as a solid iron source. The leaching behavior of scorodite was investigated through a combination of room-temperature adsorption and high-temperature reactions, after which the underlying mechanisms of this reaction were explored through adsorption kinetics and thermodynamics. Our findings indicated that the optimal reaction conditions of zinc slag with wastewater were the following: Fe/As ratio = 2.5, 80 °C, 10 h. The initial arsenic concentration in the wastewater was reduced from 13,040 mg/L to 140.5 mg/L, with 98.9% of the arsenic being removed. The toxicity characteristic leaching procedure (TCLP) results for the precipitates showed that the leaching concentration of arsenic was only 2 mg/L. For Fe2SiO4 in zinc slag, FeS dissolves to release iron ions, generating FeAsO4·2H2O, FeAsO4, and secondary minerals. Ca2Al2SiO7 generates gypsum to provide surface active sites for the growth of scorodite. This study proposes the industrial application of zinc slag for arsenic removal from copper smelting wastewater, providing a strong methodological basis to promote the development of non-ferrous metallurgical enterprises in a green and efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and models generated or used during the study appear in the submitted article. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. H.H. Zhou, G.J. Liu, L.Q. Zhang, C.C. Zhou, M.M. Mian, A.I. Cheema, Environ. Pollut. 270, 116203 (2021). https://doi.org/10.1016/j.envpol.2020.116203

    Article  CAS  Google Scholar 

  2. Y.K. Li, X.J. Qi, G.H. Li, H. Wang, J. Clean. Prod. 287, 125578 (2021). https://doi.org/10.1016/j.jclepro.2020.125578

    Article  CAS  Google Scholar 

  3. K. Mikula, G. Izydorczyk, D. Skrzypczak, K. Moustakas, A. Witek-Krowiak, K. Chojnacka, J. Hazard. Mater. 403, 123602 (2021). https://doi.org/10.1016/j.jhazmat.2020.123602

    Article  CAS  Google Scholar 

  4. Y.K. Li, X. Zhu, X.J. Qi, B. Shu, X. Zhang, K.Z. Li, Y.G. Wei, F.Y. Hao, H. Wang, J. Clean. Prod. 270, 122428 (2020). https://doi.org/10.1016/j.jclepro.2020.122428

    Article  CAS  Google Scholar 

  5. D.M. Xu, R.B. Fu, H.Q. Liu, X.P. Guo, J. Clean. Prod. 286, 124989 (2020). https://doi.org/10.1016/j.jclepro.2020.124989

    Article  CAS  Google Scholar 

  6. H.F. Souza Neto, W.V. Silveira Pereira, Y.N. Dias, E.S. Souza, R.A. Teixeira, M.W. Lima, S.J. Ramos, C.B. Amarante, A.R. Fernandes, Environ. Pollut. 265, 114969 (2020). https://doi.org/10.1016/j.envpol.2020.114969

    Article  CAS  Google Scholar 

  7. J. Pinchoff, B. Monseur, S. Desai, K. Koons, R. Alvero, M.J. Hindin, Int. J. Hyg. Environ. Health. 239, 113883 (2021). https://doi.org/10.1016/j.ijheh.2021.113883

    Article  CAS  Google Scholar 

  8. M.S. Rahaman, M.M. Rahman, N. Mise, M.T. Sikder, G. Ichihara, M.K. Uddin, M. Kurasaki, S. Ichihara, Environ. Pollut. 289, 117940 (2021). https://doi.org/10.1016/j.envpol.2021.117940

    Article  CAS  Google Scholar 

  9. L.N. Lin, W.W. Qiu, D. Wang, Q. Huang, Z.G. Song, H.W. Chau, Ecotoxicol. Environ. Saf. 144, 514–521 (2017). https://doi.org/10.1016/j.ecoenv.2017.06.063

    Article  CAS  Google Scholar 

  10. A.Q. Dao, D.M. Nguyen, T.T.T. Toan, J. Mater. Sci. Mater. Electron. 32(23), 27962–27974 (2021). https://doi.org/10.1007/s10854-021-07177-7

    Article  CAS  Google Scholar 

  11. E.E. Canas Kurz, U. Hellriegel, A. Figoli, B. Gabriele, J. Bundschuh, J. Hoinkis, Water Res. 196, 116978 (2021). https://doi.org/10.1016/j.watres.2021.116978

    Article  CAS  Google Scholar 

  12. D. Haldar, P. Duarah, M.K. Purkait, Chemosphere 251, 126388 (2020). https://doi.org/10.1016/j.chemosphere.2020.126388

    Article  CAS  Google Scholar 

  13. A. Kumar, S. Kumari, Parmanand, S.K. Sharma, J. Mater. Sci. Mater. Electron. 33(5), 2643–2653 (2022). https://doi.org/10.1007/s10854-021-07472-3

    Article  CAS  Google Scholar 

  14. W.A. Hamood Altowayti, H. Almoalemi, S. Shahir, N. Othman, Ecotoxicol. Environ. Saf. 205, 111267 (2020). https://doi.org/10.1016/j.ecoenv.2020.111267

    Article  CAS  Google Scholar 

  15. S.N. Lin, T.G. Zhang, X.J. Cao, X.Q. Liu, J. Mater. Sci. Mater. Electron. 32(20), 24889–24901 (2021). https://doi.org/10.1007/s10854-021-06947-7

    Article  CAS  Google Scholar 

  16. R.J. De Klerk, T. Feldmann, R. Daenzer, G.P. Demopoulos, Hydrometallurgy 151, 42–50 (2015). https://doi.org/10.1016/j.hydromet.2014.11.003

    Article  CAS  Google Scholar 

  17. Y. Du, Q. Lu, H.Y. Chen, Y.G. Du, D.Y. Du, J. Water Process. Eng. 12, 41–46 (2016). https://doi.org/10.1016/j.jwpe.2016.06.003

    Article  Google Scholar 

  18. X.B. Min, T.Y. Peng, Y.W.J. Li, Y. Ke, Y.J. Liang, X.Y. He, Trans. Nonferr. Metal Soc. 29(9), 1983–1992 (2019). https://doi.org/10.1016/s1003-6326(19)65106-x

    Article  CAS  Google Scholar 

  19. H. Xu, X.B. Min, Y.Y. Wang, Y. Ke, L.W. Yao, D.G. Liu, L.Y. Chai, Hydrometallurgy 191, 105229 (2020). https://doi.org/10.1016/j.hydromet.2019.105229

    Article  CAS  Google Scholar 

  20. N. Otgon, G.J. Zhang, K.L. Zhang, C. Yang, Hydrometallurgy 186, 58–65 (2019). https://doi.org/10.1016/j.hydromet.2019.03.012

    Article  CAS  Google Scholar 

  21. Z.H. Rong, X.C. Tang, L.P. Wu, X. Chen, W. Dang, Y. Wang, J. Mater. Res. Technol. 9(3), 5848–5857 (2020). https://doi.org/10.1016/j.jmrt.2020.03.112

    Article  CAS  Google Scholar 

  22. C. Palache, H. Berman, C. Frondel, Science 115(2990), 442 (1951). https://doi.org/10.1126/science.115.2990.442.a

    Article  Google Scholar 

  23. P. Drahota, M. Filippi, Environ. Int. 35(8), 1243–1255 (2009). https://doi.org/10.1016/j.envint.2009.07.004

    Article  CAS  Google Scholar 

  24. J.E. Dutrizac, J.L. Jambor, Hydrometallurgy 19(3), 377–384 (1988). https://doi.org/10.1016/0304-386X(88)90042-4

    Article  CAS  Google Scholar 

  25. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, T. Nakamura, Hydrometallurgy 90(2–4), 92–102 (2008). https://doi.org/10.1016/j.hydromet.2007.09.012

    Article  CAS  Google Scholar 

  26. T. Fujita, R. Taguchi, M. Abumiya, M. Matsumoto, E. Shibata, T. Nakamura, Hydrometallurgy 90(2–4), 85–91 (2008). https://doi.org/10.1016/j.hydromet.2007.09.011

    Article  CAS  Google Scholar 

  27. J.F. Le Berre, R. Gauvin, G.P. Demopoulos, Colloids Surf. A Physicochem. Eng. Asp. 315(1–3), 117–129 (2008). https://doi.org/10.1016/j.colsurfa.2007.07.028

    Article  CAS  Google Scholar 

  28. D. Paktunc, J. Dutrizac, V. Gertsman, Geochim. Cosmochim. Acta. 72(11), 2649–2672 (2008). https://doi.org/10.1016/j.gca.2008.03.012

    Article  CAS  Google Scholar 

  29. Y. Kitamura, H. Okawa, T. Kato, K. Sugawara, Ultrason Sonochem. 35, 598–604 (2017). https://doi.org/10.1016/j.ultsonch.2016.04.026

    Article  CAS  Google Scholar 

  30. Y.K. Li, X.J. Qi, G.H. Li, H. Wang, Chem. Eng. J. 410, 128303 (2021). https://doi.org/10.1016/j.cej.2020.128303

    Article  CAS  Google Scholar 

  31. R. Su, X. Ma, X.L. Yin, X.M. Zhao, Z.L. Yan, J.R. Lin, X.F. Zeng, D.N. Zhang, S.F. Wang, Y.F. Jia, Chem. Eng. J. 424, 130552 (2021). https://doi.org/10.1016/j.cej.2021.130552

    Article  CAS  Google Scholar 

  32. X.Z. Li, G.Y. Cai, Y.K. Li, X. Zhu, X.J. Qi, X. Zhang, B. Shu, K.Z. Li, Y.G. Wei, H. Wang, J. Clean. Prod. 278, 123552 (2021). https://doi.org/10.1016/j.jclepro.2020.123552

    Article  CAS  Google Scholar 

  33. G.Y. Cai, X. Zhu, K.Z. Li, X.J. Qi, Y.G. Wei, H. Wang, F.Y. Hao, Water Res. 157, 269–280 (2019). https://doi.org/10.1016/j.watres.2019.03.067

    Article  CAS  Google Scholar 

  34. M. Xia, F. Muhammad, L.H. Zeng, S. Li, X. Huang, B.Q. Jiao, Y.C. Shiau, D.W. Li, J. Clean. Prod. 209, 1206–1215 (2019). https://doi.org/10.1016/j.jclepro.2018.10.265

    Article  CAS  Google Scholar 

  35. Q.T. Shi, G.E. Sterbinsky, S.J. Zhang, C. Christodoulatos, G.P. Korfiatis, X.G. Meng, Environ. Sci. NANO 7(5), 1388–1398 (2020). https://doi.org/10.1039/d0en00024h

    Article  CAS  Google Scholar 

  36. P. Cardiano, D. Chillè, C. Foti, O. Giuffrè, Fluid Phase Equilib. 458, 9–15 (2018). https://doi.org/10.1016/j.fluid.2017.11.002

    Article  CAS  Google Scholar 

  37. J.G. Adelman, S. Elouatik, G.P. Demopoulos, J. Hazard. Mater. 292, 108–117 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.008

    Article  CAS  Google Scholar 

  38. Y.F. Jia, G.P. Demopoulos, Water Res. 42(3), 661–668 (2008). https://doi.org/10.1016/j.watres.2007.08.017

    Article  CAS  Google Scholar 

  39. M.C. Bluteau, G.P. Demopoulos, Hydrometallurgy 87(3–4), 163–177 (2007). https://doi.org/10.1016/j.hydromet.2007.03.003

    Article  CAS  Google Scholar 

  40. Y. Wang, Z.H. Rong, X.C. Tang, S. Cao, RSC Adv. 10(2), 719–723 (2020). https://doi.org/10.1039/C9RA05278J

    Article  CAS  Google Scholar 

  41. T.T. Zhang, Y.L. Zhao, S.C. Kang, H.Y. Bai, G.S. Song, Q.W. Zhang, J. Clean. Prod. 321, 128959 (2021). https://doi.org/10.1016/j.jclepro.2021.128959

    Article  CAS  Google Scholar 

  42. C. Oh, S. Rhee, M. Oh, J. Park. J. Hazard. Mater. 213–214, 147–155 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.074

    Article  CAS  Google Scholar 

  43. K.L. Tan, B.H. Hameed, J Taiwan Inst Chem Eng. 74, 25–48 (2017). https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  44. H.N. Tran, S.J. You, H.B. Ahmad, H.P. Chao, Water Res. 120, 88–116 (2017). https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  Google Scholar 

  45. E.C. Lima, F. Sher, A. Guleria, M.R. Saeb, I. Anastopoulos, H.N. Tran, H.B. Ahmad, J. Environ. Chem. Eng. 9(2), 104813 (2021). https://doi.org/10.1016/j.jece.2020.104813

    Article  CAS  Google Scholar 

  46. J.Q. Yang, L.Y. Chai, Q.Z. Li, Y.D. Shu, Trans. Nonferr. Metal Soc. 27(9), 2063–2072 (2017). https://doi.org/10.1016/s1003-6326(17)60233-4

    Article  CAS  Google Scholar 

  47. Z.L. Liu, S. Yang, Z.L. Li, X.F. Xie, Y.H. Li, Z.M. Sun, S. Luo, Z.F. Xu, Chem. Eng. J. 378, 122075 (2019). https://doi.org/10.1016/j.cej.2019.122075

    Article  CAS  Google Scholar 

  48. Y. Li, Y.J. Han, W. Li, Y.X. Li, D.Y. Zhang, Y.Q. Lan, Environ. Res. 180, 108896 (2020). https://doi.org/10.1016/j.envres.2019.108896

    Article  CAS  Google Scholar 

  49. P.C. Ke, Z.H. Liu, Can. Metall. Q. 57(3), 304–311 (2018). https://doi.org/10.1080/00084433.2018.1460441

    Article  CAS  Google Scholar 

  50. Y.F. Jia, L.Y. Xu, X. Wang, G.P. Demopoulos, Geochim. Cosmochim. Acta. 71(7), 1643–1654 (2007). https://doi.org/10.1016/j.gca.2006.12.021

    Article  CAS  Google Scholar 

  51. X.Y. Zhu, D.K. Nordstrom, R.B. McCleskey, R.C. Wang, X.C. Lu, S.L. Li, H.H. Teng, Geochim. Cosmochim. Acta. 265, 468–477 (2019). https://doi.org/10.1016/j.gca.2019.09.012

    Article  CAS  Google Scholar 

  52. Y.K. Li, X. Zhu, X.J. Qi, B. Shu, X. Zhang, K.Z. Li, Y.G. Wei, H. Wang, Chem. Eng. J. 394, 124833 (2020). https://doi.org/10.1016/j.cej.2020.124833

    Article  CAS  Google Scholar 

  53. M.M. El-Moselhy, A. Ates, A. Celebi, J. Colloid Interface Sci. 488, 335–347 (2017). https://doi.org/10.1016/j.jcis.2016.11.003

    Article  CAS  Google Scholar 

  54. M.C. Bluteau, L. Becze, G.P. Demopoulos, Hydrometallurgy 97(3–4), 221–227 (2009). https://doi.org/10.1016/j.hydromet.2009.03.009

    Article  CAS  Google Scholar 

  55. X.J. Qi, Y.K. Li, L.H. Wei, F.Y. Hao, X. Zhu, Y.G. Wei, K.Z. Li, H. Wang, RSC Adv. 10(1), 29–42 (2020). https://doi.org/10.1039/c9ra06568g

    Article  CAS  Google Scholar 

  56. X.X. Duan, X.Z. Li, Y.K. Li, X.J. Qi, G.H. Li, Z.X. Lu, N.N. Yang, J. Clean. Prod. 312, 127797 (2021). https://doi.org/10.1016/j.jclepro.2021.127797

    Article  CAS  Google Scholar 

  57. C.B. Tabelin, R.D. Corpuz, T. Igarashi, M.V. Tabelin, R.D. Alorro, K. Yoo, S. Raval, M. Ito, N. Hiroyoshi, J. Hazard. Mater. 399, 122844 (2020). https://doi.org/10.1016/j.jhazmat.2020.122844

    Article  CAS  Google Scholar 

  58. S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Environ. Earth Sci. 64, 411–423 (2010). https://doi.org/10.1007/s12665-010-0865-z

    Article  CAS  Google Scholar 

  59. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254(8), 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 52160011), the Yunnan Province Ten Thousand Talents Plan Young Talents Training Fund (No. KKRD201952029), the University-Enterprise Cooperation Project of Kunming University of Science and Technology (No. KKZ4201552002).

Funding

The study was supported by This project is supported by National Natural Science Foundation of China (Grant No. 52160011), the Yunnan Province Ten Thousand Talents Plan Young Talents Training Fund (No. KKRD201952029), the University-Enterprise Cooperation Project of Kunming University of Science and Technology (No. KKZ4201552002).

Author information

Authors and Affiliations

Authors

Contributions

JS, XQ, conceived and designed the entire experimental study. JS completed all experiments, characterization and thesis writing independently. XQ revised the manuscript. XD, GL, GY and HW oversaw the completion of the experiment.

Corresponding author

Correspondence to Xianjin Qi.

Ethics declarations

Competing interest

The authors declare that they have no relevant fifinancial or non-fifinancial interests to disclose. The authors have no conflflicts of interest to declare that are relevant to the content of this article.

Research involving human and animal rights

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Duan, X., Qi, X. et al. Removal of arsenic from copper smelting wastewater using zinc slag to synthesize scorodite. J Mater Sci: Mater Electron 34, 973 (2023). https://doi.org/10.1007/s10854-023-10376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10376-z

Navigation