Skip to main content
Log in

Gas response enhancement of nanocrystalline LaFeO3 perovskite prepared using the microwave-assisted solution method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite oxides are a type of interesting advanced materials for the development of gas sensors with enhanced properties. In this work, LaFeO3 nanocrystalline powders were synthesized through the simple and economical microwave-assisted solution method. Thermal decomposition of precursors allowed the formation of orthorhombic LaFeO3 at relatively low temperatures compared with the conventional solid-state synthesis. The influence of the chelating agent (ethylenediamine) content on the perovskite’s crystallite size was investigated. Our results indicated that increasing the ethylenediamine/metallic ions (E:M) molar ratio reduced the LaFeO3 crystallite size. Crystallite sizes varied from 50.4, 37.3, and 22.8 nm for E:M ratios 1:1, 2:1, and 4:1, respectively. Synthesized LaFeO3 powders were pressed to form pellets to evaluate the sensing response toward carbon monoxide at different concentrations (0, 5, 50, 100, 200, and 300 ppm) and different temperatures (25, 100, 200, and 300 °C). The pellets exhibited high sensitivity to CO, which increased with gas concentration and temperature. To corroborate LaFeO3’s ability for gas detection, dynamic tests were carried out in C3H8 atmospheres at different concentrations and operating temperatures. In this case, the measurements were done on thick films, showing good sensitivity, final stability, and reproducibility. In addition, it was observed that by reducing the crystallite size, the material’s sensitivity (or response) increased, having a more significant effect on changes in electrical resistance. Crystal size reduction is crucial in the sensor’s ability to detect low gas concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  2. C.N.R. Rao, Physica C 153–155, 1762–1768 (1988)

    Article  Google Scholar 

  3. F. Zhou, L. Zhou, M. Hu, X. Tong, Y. Liu, H. Li, S. Yang, M. Wei, Solid State Ion. 319, 22–27 (2018)

    Article  CAS  Google Scholar 

  4. G. Peng, X. Xu, G. Xu, J. Nanomater. 10, 1 (2015)

    Google Scholar 

  5. M.A. Peña, J.L.G. Fierro, Chem. Rev. 101, 1981–2017 (2001)

    Article  Google Scholar 

  6. J.W. Fergus, Sens. Actuat. B 123, 1169–1179 (2007)

    Article  CAS  Google Scholar 

  7. R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ion. 249–250, 1–5 (2013)

    Article  Google Scholar 

  8. Z. Kaiwen, W. Xuehang, W. Wenwei, X. Jun, T. Siqi, L. Sen, Adv. Powder Technol. 24, 359–363 (2013)

    Article  Google Scholar 

  9. K. Ji, H. Dai, J. Deng, L. Song, S. Xie, W. Han, J. Solid State Chem. 199, 164–170 (2013)

    Article  CAS  Google Scholar 

  10. H. Fang, Z. Kun, H. Zhen, L. Xin’ai, W. Guoqiang, L. Haibin, Chin. J. Catal. 34, 1242–1249 (2013)

    Article  Google Scholar 

  11. K. Peng, L. Fu, H. Yang, J. Ouyang, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  12. S. Zhao, L. Wang, Y. Wang, X. Li, J. Phys. Chem. Solids 116, 43–49 (2018)

    Article  Google Scholar 

  13. S. Farhadi, F. Siadatnasab, J. Mol. Catal. A: Chem. 339, 108–116 (2011)

    Article  CAS  Google Scholar 

  14. N.N. Toan, S. Saukko, V. Lantto, Phys. B 327, 279–282 (2003)

    Article  CAS  Google Scholar 

  15. B. Wang, Q. Yu, S. Zhang, T. Wang, P. Sun, X. Chuai, G. Lu, Sens. Actuat. B 258, 1215–1222 (2018)

    Article  CAS  Google Scholar 

  16. J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, Y. Du, Sens. Actuat. B 181, 802–809 (2013)

    Article  CAS  Google Scholar 

  17. I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M.A. Centeno, A. Bonavita, G. Neri, S.G. Leonardi, Ceram. Int. 44, 4183–4189 (2018)

    Article  CAS  Google Scholar 

  18. P. Song, Q. Wang, Z. Zhang, Z. Yang, Sens. Actuat. B 147, 248–254 (2010)

    Article  CAS  Google Scholar 

  19. T. Liu, Y. Xu, Mater. Chem. Phys. 129, 1047–1050 (2011)

    Article  CAS  Google Scholar 

  20. A. Eyssler, A. Winkler, P. Mandaliev, P. Hug, A. Weidenkaff, D. Ferri, Appl. Catal. B 106, 494–502 (2011)

    Article  CAS  Google Scholar 

  21. O. Mihai, D. Chen, A. Holmen, J. Catal. 293, 175–185 (2012)

    Article  CAS  Google Scholar 

  22. F. Li, Y. Liu, Z. Sun, R. Liu, C. Kou, Y. Zhao, D. Zhao, Mater. Lett. 65, 406–408 (2011)

    Article  CAS  Google Scholar 

  23. R. Abazari, S. Sanati, Superlattices Microstruct. 64, 148–157 (2013)

    Article  CAS  Google Scholar 

  24. X. Chu, S. Zhou, W. Zhang, H. Shui, Mater. Sci. Eng. B 164, 65–69 (2009)

    Article  CAS  Google Scholar 

  25. I. Bilecka, M. Niederberger, Electrochim. Acta 55, 7717–7725 (2010)

    Article  CAS  Google Scholar 

  26. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuat. B 160, 580–591 (2011)

    Article  CAS  Google Scholar 

  27. L. Gildo-Ortiz, H. Guillén-Bonilla, J. Reyes-Gómez, V.M. Rodríguez-Betancourtt, M.L. Olvera-Amador, S.I. Eguía-Eguía, A. Guillén-Bonilla, J. Santoyo-Salazar, J. Nanomater. 2017, 1 (2017)

    Article  Google Scholar 

  28. W.Y. Lee, H.J. Yun, J.W. Yoon, J. Alloys Compd. 583, 320–324 (2014)

    Article  CAS  Google Scholar 

  29. P.H. Tchoua-Ngamou, N. Bahlawane, Chem. Mater. 22, 4158–4165 (2010)

    Article  Google Scholar 

  30. S.M. Selbach, J.R. Tolchard, A. Fossdal, T. Grande, J. Solid State Chem. 196, 249–254 (2012)

    Article  CAS  Google Scholar 

  31. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  32. A.G. Khaledi, S. Afshar, H.S. Jahromi, Mater. Chem. Phys. 135, 855–862 (2012)

    Article  CAS  Google Scholar 

  33. A. Worayingyong, P. Kangvansura, S. Kityakarn, Coll. Surf. A 320, 123–129 (2008)

    Article  CAS  Google Scholar 

  34. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088–2106 (2010)

    Article  CAS  Google Scholar 

  35. M. Siemons, U. Simon, Solid State Phenom. 128, 225–236 (2007)

    Article  CAS  Google Scholar 

  36. H.J. Kim, J.H. Lee, Sens. Actuat. B 192, 607–627 (2014)

    Article  CAS  Google Scholar 

  37. L. Sun, J. Hu, L. Zhang, F. Gao, Y. Zhang, H. Qin, Curr. Appl. Phys. 11, 1278–1281 (2011)

    Article  Google Scholar 

  38. N. Yamazoe, Sens. Actuat. B 5, 7–19 (1991)

    Article  CAS  Google Scholar 

  39. J. Huang, Q. Wan, Sensors 9, 9903–9924 (2009)

    Article  Google Scholar 

  40. G. Korotcenkov, Mater. Sci. Eng. B 139, 1–23 (2007)

    Article  CAS  Google Scholar 

  41. L. Gildo, H. Guillén, J. Santoyo, M.L. Olvera, T.V.K. Karthik, E. Campos, J. Reyes, J. Nanomater. 2014, 8 (2014)

    Google Scholar 

  42. H. Guillén, L. Gildo, M.L. Olvera, J. Santoyo, V.M. Rodríguez, A. Guillén, J. Reyes, J. Nanomater. 2015, 9 (2015)

    Google Scholar 

  43. A. Guillén-Bonilla, V.M. Rodríguez Betancourtt, J.T. Guillén-Bonilla, A. Sánchez Martínez, L. Gildo-Ortiz, J. Santoyo-Salazar, J.P. Morán-Lázaro, H. Guillén-Bonilla, O. Blanco-Alonso, Ceram Int. 43, 13635–13644 (2017)

    Article  Google Scholar 

  44. H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillén Bonilla, J. Reyes-Gómez, L. Gildo-Ortiz, M. Flores-Martínez, M.L. Olvera-Amador, J. Santoyo-Salazar, J. Nanomater. 2015, 8 (2015)

    Google Scholar 

  45. L. Gildo-Ortiz, J. Reyes-Gómez, J.M. Flores-Álvarez, H. Guillén-Bonilla, M.L. Olvera, V.M. Rodríguez-Betancourtt, Y. Verde-Gómez, A. Guillén-Cervantes, J. Santoyo-Salazar, Ceram. Int. 42, 18821–18827 (2016)

    Article  CAS  Google Scholar 

  46. K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford Seamus, Sens. Rev. 24, 181–198 (2004)

    Article  Google Scholar 

  47. A. Avila-García, A. Chaudhary, H. Rojas-Chávez, Thin Solid Films 724, 138617 (2021)

    Article  Google Scholar 

  48. J.A. Ramírez-Ortega, H. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, A. Sánchez-Martínez, J.T. Guillén-Bonilla, L. Gildo-Ortiz, E. Huízar-Padilla, J. Reyes-Gómez, J Mater Sci. Mater. Electron. 33, 18268–18283 (2022)

    Article  Google Scholar 

  49. E. Huízar-Padilla, H. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, A. Sánchez-Martínez, J.T. Guillen-Bonilla, L. Gildo-Ortiz, J. Reyes-Gómez, Sensors 21, 2362 (2021)

    Article  Google Scholar 

  50. A. Guillén Bonilla, V.M. Rodríguez Betancourtt, H. Guillén Bonilla, L. Gildo Ortiz, O. Blanco Alonso, N.E. Franco Rodríguez, J. Reyes Gómez, A. Casillas Zamora, J. Trinidad Guillén Bonilla, J Mater Sci: Mater Electron 29, 15741–15753 (2018)

    Google Scholar 

Download references

Acknowledgements

This investigation was carried out following the “line of research” “Nanostructured Semiconductor Oxides” of the academic group UDG-CA-895-"Nanostructured Semiconductors" of CUCEI, University of Guadalajara. Lorenzo Gildo Ortiz is thankful to Mexico’s National Council of Science and Technology (CONACyT) for the financial support to perform this study. Special thanks to Miguel Ángel Luna Arias, Daniel Bahena Uribe, Carlos Vizcaíno Gómez, and Darío Pozas-Zepeda for their technical assistance during the development of this work.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

LGO and JARO synthetized and developed the electrical characterization the LaFeO3 Oxide Powders. HGB and VMRB, developed the Physical characterization of LaFeO3 powders. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lorenzo Gildo-Ortiz.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gildo-Ortiz, L., Ramírez-Ortega, J.A., Guillén Bonilla, H. et al. Gas response enhancement of nanocrystalline LaFeO3 perovskite prepared using the microwave-assisted solution method. J Mater Sci: Mater Electron 34, 959 (2023). https://doi.org/10.1007/s10854-023-10375-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10375-0

Navigation