Skip to main content
Log in

Uncoupling nanoparticle geometry from material properties for improved hole injection at submonolayer nanoparticle electrode interlayers in organic hole-only devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrate enhanced hole injection into organic hole transport layers (HTL) from submonolayer NiOx, SnOx, and LiF nanoparticle hole injection layers (HIL) produced using reverse micelle templating. Decoration of ITO with nanoparticle HIL shifts the hole barrier height at the interface by modifying the electrical structure of the interfacial surface even though the submonolayers show different coverage rates with different sizes and spacing. The current density–voltage characteristics of hole-only devices using nanoparticles are higher than a non-decorated ITO anode, corresponding to the dynamic barrier height shift. Using reverse micelle templating allows the uncoupling of the effect of a non-uniform electric field from nanoscale objects from the impact of the material properties. Larger nanoparticles with greater coverage show less effective injection than smaller particles with low coverage. Using this assessment, a single monolayer of LiF with particles \(\sim\)6 nm, and 21.5% coverage shows the highest hole injection for a single layer of particles, but NiO as a material has greater capacity for hole injection per volume of material on the surface, as particles of \(\sim\)8 nm with only 5.6% coverage can still act to improve charge injection. As this optimal performance is highly dependent on the organic layer and the nature of the contact with respect to trap states, tuning the size and density of the nanoparticle arrays seems to be an effective route to optimizing HILs for novel organic materials in next generation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and analysis available upon request

Code availability

Not applicable

References

  1. A.K. Chauhan, P. Jha, D.K. Aswal, J.V. Yakhmi, Organic devices: fabrication, applications, and challenges. J. Electron. Mater. 51(2), 447–485 (2022). https://doi.org/10.1007/s11664-021-09338-0

    Article  CAS  Google Scholar 

  2. B. Geffroy, P. le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55(6), 572–582 (2006). https://doi.org/10.1002/pi.1974

    Article  CAS  Google Scholar 

  3. E.K. Lee, M.Y. Lee, C.H. Park, H.R. Lee, J.H. Oh, Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29(44), 1703638 (2017). https://doi.org/10.1002/adma.201703638

    Article  CAS  Google Scholar 

  4. C.-H. Yeh, K.S.-H. Lo, W. Lin, Visual-attention-based pixel dimming technique for OLED displays of mobile devices. IEEE Trans. Ind. Electron. 66(9), 7159–7167 (2019). https://doi.org/10.1109/TIE.2018.2874582

    Article  Google Scholar 

  5. H.S. Ryu, S.Y. Park, T.H. Lee, J.Y. Kim, H.Y. Woo, Recent progress in indoor organic photovoltaics. Nanoscale 12(10), 5792–5804 (2020). https://doi.org/10.1039/D0NR00816H

    Article  CAS  Google Scholar 

  6. Y. Wang, J. Zhang, S. Zhang, J. Huang, OFET chemical sensors: chemical sensors based on ultrathin organic field-effect transistors. Polym. Int. 70(4), 414–425 (2021). https://doi.org/10.1002/pi.6095

    Article  CAS  Google Scholar 

  7. A. Turak, On the role of LiF in organic optoelectronics. Electron. Mater. 2(2), 198–221 (2021). https://doi.org/10.3390/electronicmat2020016

    Article  Google Scholar 

  8. S.A. Choulis, V.-E. Choong, A. Patwardhan, M.K. Mathai, F. So, Interface modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater. 16(8), 1075–1080 (2006). https://doi.org/10.1002/adfm.200500443

    Article  CAS  Google Scholar 

  9. N.B. Kotadiya, H. Lu, A. Mondal, Y. Ie, D. Andrienko, P.W.M. Blom, G.-J.A.H. Wetzelaer, Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nature Mater. 17(4), 329–334 (2018). https://doi.org/10.1038/s41563-018-0022-8

    Article  CAS  Google Scholar 

  10. Y.-H. Tak, K.-B. Kim, H.-G. Park, K.-H. Lee, J.-R. Lee, Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 411(1), 12–16 (2002). https://doi.org/10.1016/S0040-6090(02)00165-7

    Article  CAS  Google Scholar 

  11. K.-B. Kim, Y.-H. Tak, Y.-S. Han, K.-H. Baik, M.-H. Yoon, M.-H. Lee, K. Ki-Beom, T. Yoon-Heung, H. Yoon-Soo, B. Kwang-Heum, Y. Myung-Hee, L. Moon-Ho, Relationship between surface roughness of indium tin oxide and leakage current of organic light-emitting diode. Jpn. J. Appl. Phys. 42(4B), L438–L440 (2003). https://doi.org/10.1143/jjap.42.l438

    Article  CAS  Google Scholar 

  12. S.I. Lee, K. Liang, L.S. Hui, R. Arbi, M. Munir, S.J. Lee, J.W. Kim, K.J. Kim, W.Y. Kim, A. Turak, Necessity of submonolayer LiF anode interlayers for improved device performance in blue phosphorescent OLEDs. J. Mater. Sci.: Mater. Electron. 32(1), 1161–1177 (2021). https://doi.org/10.1007/s10854-020-04889-0

    Article  CAS  Google Scholar 

  13. A. Turak, T. Aytun, C.W. Ow-Yang, Solution processed LiF anode modification for polymer solar cells. Appl. Phys. Lett. 100(25), 253303 (2012). https://doi.org/10.1063/1.4729932

    Article  CAS  Google Scholar 

  14. T. Aytun, A. Turak, I. Baikie, G. Halek, C.W. Ow-Yang, Solution-processed LiF for work function tuning in electrode bilayers. Nano Lett. 12(1), 39–44 (2012). https://doi.org/10.1021/nl202838a

    Article  CAS  Google Scholar 

  15. H. Kurt, J. Jia, Y. Shigesato, C.W. Ow-Yang, Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles. J. Mater. Sci. Mater. Electron. 26(11), 9205–9212 (2015). https://doi.org/10.1007/s10854-015-3613-z

    Article  CAS  Google Scholar 

  16. S.I. Lee, G.J. Yun, J.W. Kim, G. Hanta, K. Liang, L. Kojvic, L.S. Hui, A. Turak, W.Y. Kim, Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes. Sci. Rep. 9(1), 2411 (2019). https://doi.org/10.1038/s41598-019-39451-4

    Article  Google Scholar 

  17. H. Lee, C.-M. Kang, M. Park, J. Kwak, C. Lee, Improved efficiency of inverted organic light-emitting diodes using tin dioxide nanoparticles as an electron injection layer. ACS Appl. Mater. Interfaces 5(6), 1977–1981 (2013). https://doi.org/10.1021/am302787y

    Article  CAS  Google Scholar 

  18. S. Bhaumik, A.J. Pal, Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer. ACS Appl. Mater. Interfaces 6(14), 11348–11356 (2014). https://doi.org/10.1021/am501890m

    Article  CAS  Google Scholar 

  19. J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23(1), 70–3 (2011). https://doi.org/10.1002/adma.201003065. arXiv:2097.6830

    Article  CAS  Google Scholar 

  20. X. Yang, E. Mutlugun, Y. Zhao, Y. Gao, K.S. Leck, Y. Ma, L. Ke, S.T. Tan, H.V. Demir, X.W. Sun, Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes. Small 10(2), 247–252 (2014). https://doi.org/10.1002/smll.201301199

    Article  CAS  Google Scholar 

  21. J. Lee, H. Kim, K. Han, Y. Lee, M. Choi, C. Kim, Controlled enhancement in hole injection at gold-nanoparticle-on-organic electrical contacts fabricated by spark-discharge aerosol technique. ACS Appl. Mater. Interfaces 11(6), 6276–6282 (2019). https://doi.org/10.1021/acsami.8b16303

    Article  CAS  Google Scholar 

  22. H. Sung, J. Lee, K. Han, J.-K. Lee, J. Sung, D. Kim, M. Choi, C. Kim, Controlled positioning of metal nanoparticles in an organic light-emitting device for enhanced quantum efficiency. Org. Electron. 15(2), 491–499 (2014). https://doi.org/10.1016/j.orgel.2013.11.038

    Article  CAS  Google Scholar 

  23. S.K. Abkenar, A. Tufani, G.O. Ince, H. Kurt, A. Turak, C.W. Ow-Yang, Transfer printing gold nanoparticle arrays by tuning the surface hydrophilicity of thermo-responsive poly N-isopropylacrylamide (pNIPAAm). Nanoscale 9(9), 2969–2973 (2017). https://doi.org/10.1039/C6NR09396E

    Article  CAS  Google Scholar 

  24. X. Wu, L. Liu, W.C.H. Choy, T. Yu, P. Cai, Y. Gu, Z. Xie, Y. Zhang, L. Du, Y. Mo, S. Xu, Y. Ma, Substantial performance improvement in inverted polymer light-emitting diodes via surface plasmon resonance induced electrode quenching control. ACS Appl. Mater. Interfaces 6(14), 11001–11006 (2014). https://doi.org/10.1021/am5033764

    Article  CAS  Google Scholar 

  25. F.C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol. Energy Mater. Sol. Cells 92(7), 715–726 (2008). https://doi.org/10.1016/j.solmat.2008.01.013

    Article  CAS  Google Scholar 

  26. M. Jung, D. Mo Yoon, M. Kim, C. Kim, T. Lee, J. Hun Kim, S. Lee, S.-H. Lim, D. Woo, Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode. Appl. Phys. Lett. 105(1), 013306 (2014). https://doi.org/10.1063/1.4890135

    Article  CAS  Google Scholar 

  27. J.-M. Moon, J.-H. Bae, J.-A. Jeong, S.-W. Jeong, N.-J. Park, H.-K. Kim, J.-W. Kang, J.-J. Kim, M.-S. Yi, Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes. Appl. Phys. Lett. 90(16), 163516 (2007). https://doi.org/10.1063/1.2719153

    Article  CAS  Google Scholar 

  28. N.C. Lindquist, Wa. Luhman, S.-H. Oh, R.J. Holmes, Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93(12), 123308 (2008). https://doi.org/10.1063/1.2988287

    Article  CAS  Google Scholar 

  29. Y. Gong, S. Zhang, H. Gao, Z. Ma, S. Hu, Z. Tan, Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices. Sustain. Energy Fuels 4(9), 4415–4458 (2020). https://doi.org/10.1039/D0SE00621A

    Article  CAS  Google Scholar 

  30. A. Turak, Reverse micelles as a universal route to solution processed nanoparticles for optical, optoelectronic and photonic applications: a story of salt complexation, micellar stability, and nanoparticle spatial distribution. Vid. Proc. Adv. Mater. 2, 2103166 (2021). https://doi.org/10.5185/vpoam.2021.03166

    Article  Google Scholar 

  31. M. Munir, R. Arbi, P. Oliveria, L. Shu Hui, M. Bumstead, G. Hanta, K. Liang, A. Ibrahim, H. Yu, A. Turak, Photonics made to order: Reverse micelle templating as a universal approach to functional nanoparticles, in 2021 Photonics North PN. (IEEE, Toronto, 2021), p.9597948. https://doi.org/10.1109/PN52152.20219597948

    Chapter  Google Scholar 

  32. G. Kästle, H.-G. Boyen, F. Weigl, G. Lengl, T. Herzog, P. Ziemann, S. Riethmüller, O. Mayer, C. Hartmann, J. Spatz, M. Möller, M. Ozawa, F. Banhart, M. Garnier, P. Oelhafen, Micellar nanoreactors-preparation and characterization of hexagonally ordered arrays of metallic nanodots. Adv. Funct. Mater. 13(11), 853–861 (2003). https://doi.org/10.1002/adfm.200304332

    Article  CAS  Google Scholar 

  33. L. Qi, Synthesis of inorganic nanostructures in reverse micelles, in Encyclopedia of Surface and Colloid Science, 2nd edn., ed. by P. Somasundaran, A. Hubbard (Taylor & Francis, London, 2006), pp.6183–6207

    Google Scholar 

  34. M. Bumstead, K. Liang, G. Hanta, L.S. Hui, A. Turak, disLocate: tools to rapidly quantify local intermolecular structure to assess two-dimensional order in self-assembled systems. Sci. Rep. 8(1), 1554 (2018). https://doi.org/10.1038/s41598-017-18894-7

    Article  CAS  Google Scholar 

  35. Y. Sato, T. Ashida, N. Oka, Y. Shigesato, Carrier density dependence of optical band gap and work function in Sn-doped In2O3 films. Appl. Phys. Express 3(6), 061101 (2010). https://doi.org/10.1143/APEX.3.061101

    Article  CAS  Google Scholar 

  36. D. Briggs, Handbook X-ray and ultraviolet photoelectron spectroscopy (Heyden & Son Ltd, London, UK, 1977)

    Google Scholar 

  37. J. Cazaux, Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105(2), 155–185 (1999). https://doi.org/10.1016/S0368-2048(99)00068-7

    Article  CAS  Google Scholar 

  38. V. Kumar, V. Kumar, S. Som, J.H. Neethling, E. Olivier, O.M. Ntwaeaborwa, H.C. Swart, The role of surface and deep-level defects on the emission of tin oxide quantum dots. Nanotechnology 25(13), 135701 (2014). https://doi.org/10.1088/0957-4484/25/13/135701

    Article  CAS  Google Scholar 

  39. S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 608, 129–134 (2013). https://doi.org/10.1016/j.susc.2012.09.024

    Article  CAS  Google Scholar 

  40. Y.D. Wang, C.L. Ma, H.D. Li, S. Zhang, Synthesis and characterization of the composite of SnO2 nanoparticles coated on SiO2 microspheres. Mater. Chem. Phys. 107(2), 248–253 (2008). https://doi.org/10.1016/j.matchemphys.2007.07.006

    Article  CAS  Google Scholar 

  41. A.I. Kovalev, D.L. Wainstein, A.Y. Rashkovskiy, A. Osherov, Y. Golan, Size shift of XPS lines observed from PbS nanocrystals. Surf. Interface Anal. 42, 850–854 (2010). https://doi.org/10.1002/sia.3243

    Article  CAS  Google Scholar 

  42. B. Balamurugan, T. Maruyama, Inhomogeneous effect of particle size on core-level and valence-band electrons: size-dependent electronic structure of Cu3N nanoparticles. Appl. Phys. Lett. 89(3), 033112 (2006). https://doi.org/10.1063/1.2227632

    Article  CAS  Google Scholar 

  43. C.Q. Sun, Surface and nanosolid core-level shift: impact of atomic coordination-number imperfection. Phys. Rev. B 69, 045105 (2004). https://doi.org/10.1103/PhysRevB.69.045105

    Article  CAS  Google Scholar 

  44. M. Fondell, M. Gorgoi, M. Boman, A. Lindblad, An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 195, 195–199 (2014). https://doi.org/10.1016/j.elspec.2014.07.012

    Article  CAS  Google Scholar 

  45. J.-M. Themlin, M. Chtaïb, L. Henrard, P. Lambin, J. Darville, J.-M. Gilles, Characterization of tin oxides by x-ray-photoemission spectroscopy. Phys. Rev. B 46(4), 2460 (1992). https://doi.org/10.1103/PhysRevB.46.2460

    Article  CAS  Google Scholar 

  46. L. Kövér, Zs. Kovács, R. Sanjinés, G. Moretti, I. Cserny, G. Margaritondo, J. álinkás, H. Adachi, Electronic structure of tin oxides: high-resolution study of XPS and Auger spectra. Surface Interface Anal. 23(7–8), 461–466 (1995). https://doi.org/10.1002/sia.740230705

    Article  Google Scholar 

  47. J.M. Themlin, R. Sporken, J. Darville, R. Caudano, J.M. Gilles, R.L. Johnson, Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states. Phys. Rev. B 42(18), 11914–11925 (1990). https://doi.org/10.1103/PhysRevB.42.11914

    Article  CAS  Google Scholar 

  48. A.N. Mansour, Characterization of NiO by XPS. Surf. Sci. Spectra 3(3), 231–238 (1994). https://doi.org/10.1116/1.1247751

    Article  CAS  Google Scholar 

  49. M.F. Al-Kuhaili, S.H.A. Ahmad, S.M.A. Durrani, M.M. Faiz, A. Ul-Hamid, Application of nickel oxide thin films in NiO/Ag multilayer energy-efficient coatings. Mater. Sci. Semicond. Process. 39, 84–89 (2015). https://doi.org/10.1016/j.mssp.2015.04.049

    Article  CAS  Google Scholar 

  50. P. Salunkhe, M.A. AV, D. Kekuda, Investigation on tailoring physical properties of nickel oxide thin films grown by dc magnetron sputtering. Mater. Res. Express 7(1), 016427 (2020). https://doi.org/10.1088/2053-1591/ab69c5

    Article  CAS  Google Scholar 

  51. A.N. Mansour, C.A. Melendres, Characterization of electrochemically prepared \(\gamma\)-NiOOH by XPS. Surf. Sci. Spectra 3(3), 271–278 (1994). https://doi.org/10.1116/1.1247756

    Article  CAS  Google Scholar 

  52. S. Nandy, B. Saha, M.K. Mitra, K.K. Chattopadhyay, Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1-xO films by DC sputtering. J. Mater. Sci. 42(14), 5766–5772 (2007). https://doi.org/10.1007/s10853-006-1153-x

    Article  CAS  Google Scholar 

  53. P. Lopez-Varo, J. Jiménez Tejada, J. López Villanueva, J. Carceller, M. Deen, Modeling the transition from ohmic to space charge limited current in organic semiconductors. Org. Electron. 13(9), 1700–1709 (2012). https://doi.org/10.1016/j.orgel.2012.05.025

    Article  CAS  Google Scholar 

  54. C. Hyun Kim, O. Yaghmazadeh, Y. Bonnassieux, G. Horowitz, Modeling the low-voltage regime of organic diodes: origin of the ideality factor. J. Appl. Phys. 110(9), 093722 (2011). https://doi.org/10.1063/1.3660221

    Article  CAS  Google Scholar 

  55. P. Mantri, S. Rizvi, B. Mazhari, Estimation of built-in voltage from steady-state current-voltage characteristics of organic diodes. Org. Electron. 14(8), 2034–2038 (2013). https://doi.org/10.1016/j.orgel.2013.04.030

    Article  CAS  Google Scholar 

  56. F. Torricelli, D. Zappa, L. Colalongo, Space-charge-limited current in organic light emitting diodes. Appl. Phys. Lett. 96(11), 113304 (2010). https://doi.org/10.1063/1.3358147

    Article  CAS  Google Scholar 

  57. S.M.H. Rizvi, B. Mazhari, An improved method for extraction of mobility from space charge limited current in organic semiconductor films. J. Appl. Phys. 121(15), 155501 (2017). https://doi.org/10.1063/1.4981242

    Article  CAS  Google Scholar 

  58. M. Fina, S.S. Mao, Approximating the electrical enhancement effects in a nano-patterned, injection-limited, single-layer organic light-emitting diode. J. Appl. Phys. 112(2), 024512 (2012). https://doi.org/10.1063/1.4737389

    Article  CAS  Google Scholar 

  59. P. Lopez-Varo, J. Jiménez-Tejada, O. Marinov, C. Chen, M. Deen, Charge density at the contacts of symmetric and asymmetric organic diodes. Org. Electron. 35, 74–86 (2016). https://doi.org/10.1016/j.orgel.2016.05.009

    Article  CAS  Google Scholar 

  60. P. Lopez-Varo, J. Jiménez Tejada, J. López Villanueva, M. Deen, Space-charge and injection limited current in organic diodes: a unified model. Org. Electron. 15(10), 2526–2535 (2014). https://doi.org/10.1016/j.orgel.2014.05.039

    Article  CAS  Google Scholar 

  61. E.A. Duijnstee, J.M. Ball, V.M. Le Corre, L.J.A. Koster, H.J. Snaith, J. Lim, Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5(2), 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720

    Article  CAS  Google Scholar 

  62. S.M.H. Rizvi, P. Mantri, B. Mazhari, Traps signature in steady state current-voltage characteristics of organic diode. J. Appl. Phys. 115(24), 244502 (2014). https://doi.org/10.1063/1.4884838

    Article  CAS  Google Scholar 

  63. Ch. Jonda, A.B.R. Mayer, W. Grothe, Determination of the barrier heights for electron injection in organic light emitting devices. J. Appl. Phys. 85(9), 6884–6888 (1999). https://doi.org/10.1063/1.370207

    Article  CAS  Google Scholar 

  64. N. Koch, S. Duhm, J.P. Rabe, S. Rentenberger, R.L. Johnson, J. Klankermayer, F. Schreiber, Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules. Appl. Phys. Lett. 87(10), 101905 (2005). https://doi.org/10.1063/1.2041838

    Article  CAS  Google Scholar 

  65. J.W. Kim, A. Kim, Absolute work function measurement by using photoelectron spectroscopy. Curr. Appl. Phys. 31, 52–59 (2021). https://doi.org/10.1016/j.cap.2021.07.018

    Article  Google Scholar 

  66. W. Song, S. So, L. Cao, Angular-dependent photoemission studies of indium tin oxide surfaces. Appl. Phys. A 72(3), 361–365 (2001). https://doi.org/10.1007/s003390000534

    Article  CAS  Google Scholar 

  67. D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edn. (CRC Press/Taylor and Francis, Boca Raton, FL, 2010)

    Google Scholar 

  68. K. Zojer, Simulation of charge carriers in organic electronic devices: methods with their fundamentals and applications. Adv. Opt. Mater. 9(14), 2100219 (2021). https://doi.org/10.1002/adom.202100219

    Article  CAS  Google Scholar 

  69. H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8(3), 759–787 (2020). https://doi.org/10.1039/C9TC05695E

    Article  CAS  Google Scholar 

  70. K. Akaike, N. Koch, M. Oehzelt, Fermi level pinning induced electrostatic fields and band bending at organic heterojunctions. Appl. Phys. Lett. 105(22), 223303 (2014). https://doi.org/10.1063/1.4903360

    Article  CAS  Google Scholar 

  71. Y. Noguchi, Y. Miyazaki, Y. Tanaka, N. Sato, Y. Nakayama, T.D. Schmidt, W. Brütting, H. Ishii, Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices. J. Appl. Phys. 111(11), 114508 (2012). https://doi.org/10.1063/1.4724349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the McMaster Manufacturing Research Institute (MMRI) and BioInterfaces Institute at McMaster University for access to the AFM and R. Sodhi at the Open Center for the Characterization of Advanced Materials (OCCAM) at the University of Toronto for XPS and UPS measurements. This research was funded by Academic Research Fund of Hoseo University in 2019 (2019-0811) (WYK), and Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-05994), the Ontario Ministry of Research and Innovation (ER15-11-123), and the Satellite Canada Innovation Network (HTSN-621).

Funding

This research was funded by Academic Research Fund of Hoseo University in 2019 (2019-0811) (WYK), and Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-05994), the Ontario Ministry of Research and Innovation (ER15-11-123), and the Satellite Canada Innovation Network (HTSN-621).

Author information

Authors and Affiliations

Authors

Contributions

SIL, WYK, and AT contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SIL, MM, and SJL. The first draft of the manuscript was written by SIL and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Woo Young Kim or Ayse Turak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.I., Munir, M., Arbi, R. et al. Uncoupling nanoparticle geometry from material properties for improved hole injection at submonolayer nanoparticle electrode interlayers in organic hole-only devices. J Mater Sci: Mater Electron 34, 1101 (2023). https://doi.org/10.1007/s10854-023-10370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10370-5

Navigation