Skip to main content
Log in

High sensitivity and low hysteresis of humidity sensor based on imidazole derivative

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The imidazole derivative 2–(4, 5–Diphenyl–1H–Imidazole–2–yl)phenol was deposited between the Ag-electrodes via drop-casting method to fabricate the humidity sensor. The rectangular-shaped flakes of various shapes and sizes along with voids, pores, and pore-channels have been observed in surface morphology of the deposited material. The water molecules (H2O) interact with NH and N-sites in the central ring of the compound and functional group OH at ortho-position. The dielectric constant of the materials is around 1.4, which is slightly lower than our previously published value of 1.6. Capacitive and resistive behaviors of the device were checked at two different frequencies (1 kHz and 10 kHz) for different humidity levels. In the applied frequency range (1–10 kHz), with the humidity range of 45-95% RH, the capacitance of the sensor was improved from 10.1–378 pF, and from 7.43–16.48 pF, respectively. The sensor’s response and recovery time were 34 seconds and 6 seconds, respectively. The goodness of fit, R2, value was 0.99 which is close to unity for physisorbed layers. The sensor showed low hysteresis and has good sensitivity in comparison with the reported devices based on other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The paper is not submitted priorly or simultaneously to anywhere and no part is presented or published. All the data are included and no separate repository or representation of data.

References

  1. M.P. Dojcinovic, Z.Z. Vasiljevic, J.B. Krstic, J.D. Vujancevic, S. Markovic, N.B. Tadic, M.V. Nikolic, Electrospun nickel manganite (NiMn2O4) nanocrystalline fibers for humidity and temperature sensing. Sensors 21(13), 4357 (2021)

    Article  CAS  Google Scholar 

  2. M. Rahman, H. Gul, ur Rahman, Z., Zulfiqar, S., Khan, R., Ullah, B., Ahmad, I., Saeed, A., Alamgir, K., Ullah, M. and Fan, J., Electrical and hysteric properties of organic compound-based humidity sensor and its dualistic interactive approach to H2O molecules. Mater. Today Commun. 29, 102882 (2021)

    Article  Google Scholar 

  3. M.U. Rehman, M. Imran, H. Zia-Ur-Rehman, A., Badshah, A., Shah, A., Shah, G., Humidity-sensing and DNA-binding ability of bis (4-benzylpiperazine-1-carbodithioato-k 2 S, S′) nickel (II). J. Coord. Chem. 68(2), 295–307 (2015)

    Article  CAS  Google Scholar 

  4. M.Z. Atashbar, A.Z. Sadek, W. Wlodarski, S. Sriram, M. Bhaskaran, C.J. Cheng, R.B. Kaner, K.K. Zadeh, Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64 YX LiNbO3 for H2 sensing. Sens. Actuators B Chem. 138, 85–89 (2009)

    Article  CAS  Google Scholar 

  5. X.S. Du, Z.H. Ying, Y.D. Jiang, Z.X. Liu, T.J. Yang, G.Z. Xie, Synthesis and evaluation of a new polysiloxane as SAW sensor coatings for DMMP detection. Sens. Actuators B Chem. 134, 409–413 (2008)

    Article  CAS  Google Scholar 

  6. Y. Li, L.J. Hong, M.J. Yang, Cross linked and quaternized poly(4-vinylpyridine)/ polypyrrole composite as a potential candidate for the detection of low humidity. Talanta 75, 412–417 (2008)

    Article  CAS  Google Scholar 

  7. L.A. Mashat, H.D. Tran, W. Wlodarski, R.B. Kaner, K.K. Zadeh, Polypyrrole nanofiber surface acoustic wave gas sensors. Sens. Actuators B Chem. 134, 826–831 (2008)

    Article  Google Scholar 

  8. Y. Li, L.J. Hong, Y.S. Chen, H.C. Wang, X. Lv, M.J. Yang, Poly(4-vinylpyridine)/ carbon black composite as a humidity sensor. Sens. Actuators B Chem. 123, 554–559 (2007)

    Article  CAS  Google Scholar 

  9. C.Y. Shen, C.P. Huang, W.T. Huang, Gas-detecting properties of surface acoustic wave ammonia sensors. Sens. Actuators B Chem. 101, 1–7 (2004)

    Article  CAS  Google Scholar 

  10. C. Caliendo, I. Fratoddi, M.V. Russo, Sensitivity of a platinum–polyyne-based sensor to low relative humidity and chemical vapors. Appl. Phys. Lett. 80, 4849–4850 (2002)

    Article  CAS  Google Scholar 

  11. H. Wohltjen, R. Dessy, Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Anal. Chem. 51, 1458–1464 (1979)

    Article  CAS  Google Scholar 

  12. A.E. Hoyt, A.J. Ricco, J.W. Bartholomew, G.C. Osbourn, SAW sensors for the room temperature measurement of CO2 and relative humidity. Anal. Chem. 70, 2137–2145 (1998)

    Article  CAS  Google Scholar 

  13. L. Hu, Y. Li, Improved acetone sensing properties of flat sensors based on Co-SnO2 composite nanofibers. Chin. Sci. Bull. 56, 2644–2648 (2011)

    Article  CAS  Google Scholar 

  14. C.L. Cao, C.G. Hu, L. Fang, S.X. Wang, Y.S. Tian, C.Y. Pan, Humidity sensor based on multi-walled carbon nanotubes thin films. J. Nanomater. 2011, 1–5 (2011). https://doi.org/10.1155/2011/707303

    Article  CAS  Google Scholar 

  15. U.V. Patil, C.S. Rout, D.J. Late, Impedimetric humidity sensor based on α-Fe2O3 nanoparticles. Adv. Device Mater. 1(3), 88–92 (2015)

    Article  Google Scholar 

  16. H.M. Zhao, Y. Chen, X. Quan, X. Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photo electrocatalytic degradation. Chin. Sci. Bull. 52, 1456–1457 (2007)

    Article  CAS  Google Scholar 

  17. M.V. Kulkarni, A.K. Viswanath, P. Khanna, Synthesis and humidity sensing properties of conducting polymer (N–methyl aniline) doped with different acids. Sens. Actuators B 115, 140–149 (2006)

    Article  CAS  Google Scholar 

  18. X.-J. Lv, M.-S. Yao, G.-E. Wang, Y.-Z. Li, G. Xu, A new 3D cupric coordination polymer as chemiresistor humidity sensor: narrow hysteresis, high sensitivity, fast response and recovery. Sci. China Chem. 60(9), 1197–1204 (2017)

    Article  CAS  Google Scholar 

  19. B. Cheng, B. Tian, C. Xie, Y. Xiao, S. Lei, Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 21, 1907–1912 (2011)

    Article  CAS  Google Scholar 

  20. D. Hernández-Rivera, G. Rodríguez-Roldán, R. Mora-Martínez, E. Suaste-Gómez, A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors 17(5), 1009 (2017)

    Article  Google Scholar 

  21. S. Agarwal, G. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B 94, 290–293 (2003)

    Google Scholar 

  22. R.A. Shaukat, M.U. Khan, Q.M. Saqib, M.Y. Chougale, J. Kim, J. Bae, All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators: B. Chem. 345, 130371 (2021)

    Article  CAS  Google Scholar 

  23. E.J. Connolly, G.M. O’Halloran, H.T.M. Pham, P.M. Sarro, P.J. French, Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications. Sens. Actuators A 99, 25–30 (2002)

    Article  CAS  Google Scholar 

  24. A. Din, Kh.S. Karimov, K. Akhtar, M.I. Khan, M.T.S. Chani, M.A. Khan, A.M. Asiri, S.B. Khan, Impedimetric humidity sensor based on the use of SnO2–Co3O4 spheres. J. Mater. Sci. Mater. Electron. 28, 4260–4266 (2017)

    Article  CAS  Google Scholar 

  25. M.-H. You, X. Yan, J. Zhang, X.-X. Wang, X.-X. He, M. Yu, X. Ning, Y.-Z. Long, Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res. Lett. 12, 360 (2017). https://doi.org/10.1186/s11671-017-2139-0

    Article  CAS  Google Scholar 

  26. X. Song, Q. Qi, T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B Chem. 138, 368–373 (2009)

    Article  CAS  Google Scholar 

  27. G. Nagalakshmi, Synthesis and pharmacological evaluation of 2–(4–Halosubstituted phenyl)–4,5–diphenyl–1H–imidazoles. E-J. Chem. 5(3), 447–452 (2008). https://doi.org/10.1155/2008/921256

    Article  CAS  Google Scholar 

  28. Yu. Shu-Ning Yue, L.Y. Wan, W.-L. Zhang, H. Cui, L.-Z. Zhang, Q.-J. Zhou, H. Zou, Z.-T. Liu, L.-L. Zhao, S.-L. Zhou, Wu. Hui, Synthesis and luminescence-structure relationship of 2,4,5–Triarylimidazoles. Asian J. Chem. 26(19), 6328–6330 (2014)

    Article  Google Scholar 

  29. T.T. Nguyen, N.P.T. Le, T.T. Nguyen, P.H. Tran, An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Adv. 9(65), 38148 (2019)

    Article  CAS  Google Scholar 

  30. E. Elanthamilan, L. Sarala, A. Bella, A. Sathiyan, I. Sharmila Lydia, S. Sundar Manoharan, J. Princy Merlin, Electro-organic synthesis of 2-(4,5–diphenyl–1H–imidazole–2–yl)phenol in Aqueous medium for organic monomer based Supercapacitor electrode. Electrochim. Acta 251, 32–42 (2017)

    Article  CAS  Google Scholar 

  31. S. Ramachandran, G. Velraj, FT-IR, FT-raman spectral analysis and density functional theory calculations studies of 3–chloro–2–nitrobenzyl alcohol romanian. J. Phys. 57(7), 1128–1137 (2012)

    CAS  Google Scholar 

  32. M. Sajid, H.B. Kim, Y.J. Yang, J. Jo, K.H. Choi, Highly sensitive BEHP-co-MEH:PPV + poly(acrylic acid)partial sodium salt based relative humidity sensor. Sens. Actuators B Chem. 246, 809–818 (2017)

    Article  CAS  Google Scholar 

  33. S.D. Collins, C.M. Proctor, N.A. Ran, T.-Q. Nguyen, Understanding open-circuit voltage loss through the density of states in organic bulk heterojunction solar cells. Adv. Energy Mater. 6, 1501721 (2016)

    Article  Google Scholar 

  34. V.V. Brus, C.M. Proctor, N.A. Ran, T.-Q. Nguyen, Capacitance Spectroscopy for Quantifying Recombination Losses in Nonfullerene Small-Molecule Bulk Heterojunction Solar Cells Adv. Energy Mater. 6, 1502250 (2016)

    Article  Google Scholar 

  35. N. Cho, C.W. Schlenker, K.M. Knesting, P. Koelsch, H.-L. Yip, D.S. Ginger, A.K.-Y. Jen, High-Dielectric Constant Side-Chain Polymers Show Reduced Non-Geminate Recombination in Heterojunction Solar Cells. Adv. Energy Mater. 4, 1301857 (2014). https://doi.org/10.1002/aenm.201301857

    Article  CAS  Google Scholar 

  36. X. de Vries, R. Coehoorn, Vibrational mode contribution to the dielectric permittivity of disordered small-molecule organic semiconductors. Phys. Rev. Mater. 4, 085602 (2020)

    Article  Google Scholar 

  37. Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 129, 6070–6071 (2007)

    Article  CAS  Google Scholar 

  38. S. Kotresh, Y.T. Ravikiran, H.G.R. Prakash, S.C.V. Kumari, Polyaniline-titanium dioxide composite as humidity sensor at room temperature. Nanosys. Phys. Chem. Math. 7(4), 732–739 (2016)

    Article  CAS  Google Scholar 

  39. W.C. Wang, Y.T. Tian, K. Li, E.Y. Lu, D.S. Gong, X.J. Li, Capacitive humidity- sensing properties of Zn2SiO4 film grown on silicon nanoporous pillar array. Appl. Surf. Sci. 273, 372–376 (2013)

    Article  CAS  Google Scholar 

  40. H. Cankurtaran, O. Yazici, S. Dinc, F. Karaman, Humidity sensitive properties of electronically conductive poly(diphenylamine sulfonic acid) and its block copolymer and blends. Int. J. Electrochem. Sci. 8, 3265–3278 (2013)

    CAS  Google Scholar 

  41. G. Leilei, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, G. Chen, Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sensors Actuators B 159, 1–7 (2011)

    Article  Google Scholar 

  42. S.A. Khan, M. Saqib, M.M. Rehman, M.U. Rehman, H.M., Rahman, S.A., Yang, Y., Kim, S. and Kim, W.Y., A full range flexible and printed humidity sensor based on a solution-processed P(VDF-TrFE)/Graphene-Flower composite. Nanomaterials 11, 1915 (2021)

    Article  CAS  Google Scholar 

  43. W. Xie, B. Liu, S. Xiao, H. Li, Y. Wang, D. Cai, D. Wang, L. Wang, Y. Liu, Q. Li, T. Wang, High performance humidity sensors based on CeO2 nanoparticles. Sens. Actuators B Chem. 215, 125–132 (2015)

    Article  CAS  Google Scholar 

  44. N. Fatima, F. Aziz, Z. Ahmad, M.A. Najeeb, M.I. Azmeer, Kh.S. Karimov, M.M. Ahmed, S. Basheer, R.A. Shakoor, K. Sulaiman, Compositional engineering of the pi-conjugated small molecular VOPcPhO: Alq3 complex to boost humidity sensing. RSC Adv. 7, 19780–19786 (2017)

    Article  CAS  Google Scholar 

  45. H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z.-J. Qiu, D. Wu, Stable and fast- response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer. Sensors 17(10), 2415 (2017). https://doi.org/10.3390/s17102415

    Article  CAS  Google Scholar 

  46. M.F. Afsar, M.A. Rafiq, A. Jamil, S. Fareed, F. Siddique, A.I.Y. Tok, M.M. ul Hasan, Development of high-performance bismuth sulfide nanobelts humidity sensor and effect of humid environment on its transport properties. ACS Omega 4(1), 2030–2039 (2019). https://doi.org/10.1021/acsomega.8b01854

    Article  CAS  Google Scholar 

  47. M.U. Rahman, G. Shah, A. Ullah, Z.U. Rahman, A. Mehwish, R. Khan, B. Ullah Zulfiqar, I. Ahmad, Resistive- and capacitive-type humidity and temperature sensors based on a novel caged nickel sulfide for environmental monitoring. J. Mater. Sci. Mater. Electron. 31, 3557–3563 (2020)

    Article  Google Scholar 

  48. P. Qi, T. Zhang, J. Shao, B. Yang, T. Fei, R. Wang, A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens. Actuators, A 287, 93–101 (2019)

    Article  CAS  Google Scholar 

  49. Q. Lin, Y. Li, M. Yang, Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Anal. Chim. Acta 748, 73–80 (2012)

    Article  CAS  Google Scholar 

  50. M. Peng, X. Zheng, Z. Ma, H. Chen, S. Liu, Y. He, M. Li, Ni-pattern guided GaN nanowire-array humidity sensor with high sensitivity enhanced by UV photoexcitation. Sens. Actuators, B Chem. 256, 367–373 (2018)

    Article  CAS  Google Scholar 

  51. B. Chitara, D.J. Late, S.B. Krupanidhi, C.N.R. Rao, Room-temperature gas sensors based on gallium nitride nanoparticles. Solid State Commun. Issues 150(41), 2053–2056 (2010)

    Article  CAS  Google Scholar 

  52. N. Lal, Room temperature gas sensing with ultrathin au nanowires. J. Mater. Sci. Eng. 5(3), 1000241 (2016). https://doi.org/10.4172/2169-0022.1000241

    Article  CAS  Google Scholar 

  53. H.-S. Kim, J.-H. Kang, J.-Y. Hwang, U.S. Shin, Wearable CNTs-based humidity sensors with high sensitivity and flexibility for real-time multiple respiratory monitoring. Nano Converg. (2022). https://doi.org/10.1186/s40580-022-00326-6

    Article  Google Scholar 

  54. J.R. McGhee, J.S. Sagu, D.J. Southee, K.G.U. Wijayantha, Humidity sensing properties of transparent sputter-coated ITO and printed polymer structure. IEEE Sens. J. (2018). https://doi.org/10.1109/JSEN.2018.2858021

    Article  Google Scholar 

  55. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.A. Shah, Z. Radzi, N. Abu- Osman, Design and development for capacitive humidity sensor applications of lead-free Ca Mg, Fe, Ti-oxides based electro-ceramics with improved sensing properties via physisorption. Sensors 16(7), 1135 (2016)

    Article  Google Scholar 

  56. Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires array at room temperature. Sens. Actuators A Phys. 235, 234–239 (2015)

    Article  CAS  Google Scholar 

  57. B. Cheng, Z. Ouyang, B. Tian, Y. Xiao, S. Lei, Porous ZnAl2O4 spinel nanorods: high sensitivity humidity sensors. Ceram. Int. 39, 7379–7386 (2013)

    Article  CAS  Google Scholar 

  58. Z.-S. Feng, X.-J. Chen, J.-J. Chen, J. Hu, A novel humidity sensor based on alumina nanowire films. J. Phys. D. Appl. Phys. 45, 225305 (2012)

    Article  Google Scholar 

  59. H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sens. Actuators B Chem. 166, 451–456 (2012)

    Article  Google Scholar 

  60. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators, B Chem. 225, 233–240 (2016)

    Article  CAS  Google Scholar 

  61. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sensors and Actuators B 197, 66–72 (2014)

    Article  CAS  Google Scholar 

  62. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance qcm humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators, B Chem. 225, 1869–1877 (2018)

    Article  Google Scholar 

  63. D. Zhang, Xu. Zhenyuan, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 67, 104251 (2020)

    Article  CAS  Google Scholar 

  64. D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, Yu. Liandong, Electrospinning of flexible poly(vinyl alcohol)/mxene nanofber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SB, MUR, Z, BU, and RK presented the idea. SB and MUR wrote this paper. Z, BU, and RK revised the paper. SAO, KA, NN have addressed the comments and help us with discussion. And finally RK submitted the paper.

Corresponding authors

Correspondence to Muneeb ur Rahman or Rajwali Khan.

Ethics declarations

Competing interests

The authors declared no potential conflicts of interest.

Compliance with ethical standards

Hereby, we declare that the manuscript is our original work and not has been published or under editorial considerations anywhere else. The stated authors of the work have read the content and approved for submission of this manuscript to Journal of Materials Science: Materials in Electronics. There is no personal or financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S., Rahman, M.u., Al Otaibi, S. et al. High sensitivity and low hysteresis of humidity sensor based on imidazole derivative. J Mater Sci: Mater Electron 34, 920 (2023). https://doi.org/10.1007/s10854-023-10349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10349-2

Navigation