Skip to main content
Log in

Impedimetric humidity sensor based on the use of SnO2–Co3O4 spheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The article describes synthesis and sensing properties of SnO2–Co3O4 spheres composed of aggregated nanoparticles. Co3O4 was doped with pristine SnO2, and the resulting nanocomposite spheres were incorporated into a silicon adhesive. This material is shown to enable impedimetric sensing of relative humidity (RH). The impedance of the material decreases by 80% at a 1.0 kHz working frequency and by a factor of 2500 at 100 Hz. Capacitance increases by 70% at 1.0 kHz frequency and by a factor of 1509 at 100 Hz. The sensor works in the 10–90% RH range at temperatures from 10 to 80 °C. SnO2–Co3O4 based humidity sensor exhibited high sensitivity which makes it suitable material for the utilization in humidity meter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.B. Khan, S.A. Khan, A.M. Asiri, A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Appl. Surf. Sci. 370, 445 (2016)

    Article  Google Scholar 

  2. S.A.B. Asif, S.B. Khan, A.M. Asiri, Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res. Lett. 9, 510 (2014)

    Article  Google Scholar 

  3. S.A. Khan, S.B. Khan, A.M. Asiri, Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New J. Chem. 39, 5561 (2015)

    Article  Google Scholar 

  4. S.A. Khan, S.B. Khan, A.M. Asiri, Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. J. Mater. Sci.: Mater. Electron. 27, 5294 (2016)

    Google Scholar 

  5. M.T.S. Chani, S.B. Khan, K.S. Karimov, A.M. Asiri, K. Akhtar, M.N. Arshad, Synthesis and pressure sensing properties of the pristine cobalt oxide nanopowder. Int. J. Electrochem. Sci. 10, 10433 (2015)

    Google Scholar 

  6. M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials. Biosens. Bioelectron. 28, 127 (2011)

    Article  Google Scholar 

  7. M.V. Fuke, P. Kanitkar, M. Kulkarni, B.B. Kale, R.C. Aiyer, Effect of particle size variation of Ag nanoparticles in Polyaniline composite on humidity sensing. Talanta 81, 320 (2010)

    Article  Google Scholar 

  8. N. Camaioni, G.C. Micelia, Y. Li, M.J. Yang, A. Zanelli, Water activated ionic conduction in cross-linked polyelectrolytes. Sens. Actuators B 134, 230 (2008)

    Article  Google Scholar 

  9. A.T. Ramaprasad, V. Rao, Chitin–polyaniline blend as humidity sensor. Sens. Actuators B 148, 117 (2010)

    Article  Google Scholar 

  10. S.K. Shukla, S.K. Shukla, P.P. Govender, E.S. Agorku, A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Microchim. Acta 183, 573 (2016)

    Article  Google Scholar 

  11. R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov, K. Varahramyan, Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nanoassembly. Sens. Actuators B 114, 218 (2006)

    Article  Google Scholar 

  12. J.R. Huang, M.Q. Li, Z.Y. Huang, J.H. Liu, A novel conductive humidity sensor based on field ionization from carbon nanotubes. Sens. Actuators A 133, 467 (2007)

    Article  Google Scholar 

  13. N. Horzum, D. Taşçıoglu, S. Okur, M.M. Demir, Humidity sensing properties of ZnO-based fibers by electrospinning. Talanta 85(2011), 1105–1111 (2011)

    Article  Google Scholar 

  14. H. Lam, G. Rao, J. Loureiro, L. Tolosa, Dual optical sensor for oxygen and temperature based on the combination of time domain and frequency domain techniques. Talanta 84(2011), 65–70 (2011)

    Article  Google Scholar 

  15. S. Park, J. Kang, J. Park, S. Mun, One-bodied humidity and temperature sensor having advanced linearity at low and high relative humidity range. Sensor Actuator. B Chem. 76(2001), 322–326 (2001)

    Article  Google Scholar 

  16. J. Huang, Y. Hao, H. Lin, D. Zhang, J. Song, D. Zhou, Mater. Sci. Eng. B 99, 523 (2003)

    Article  Google Scholar 

  17. S.B. Khan, K.S. Karimov, M.T.S. Chani, A.M. Asiri, K. Akhtar, N. Fatima, Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Microchim. Acta 182, 2019 (2015)

    Article  Google Scholar 

  18. M.T. Saeed, K.S. Karimov, S.B. Khan, A.M. Asiri, Fabrication and investigation of cellulose acetate-copper oxide nano-composite based humidity sensors. Sens. Actuators A (2016). doi:10.1016/j.sna.2016.05.016

    Google Scholar 

  19. M.T.S. Chani, A.M. Asiri, K.S. Karimov, M. Bashir, S.B. Khan, M.M. Rahman, Carbon nanotubes-silicon nanocomposites based resistive temperature sensors. Int. J. Electrochem. Sci. 10, 3784 (2015)

    Google Scholar 

  20. S.B. Khan, M.T.S. Chani, K.S. Karimov, A.M. Asiri, M. Bashir, R. Tariq, Humidity and temperature sensing properties of copper oxide–Si-adhesive nanocomposite. Talanta 120, 443 (2014)

    Article  Google Scholar 

  21. M.T.S. Chani, K.S. Karimov, S.B. Khan, A.M. Asiri, M. Saleem, M. Bashir, Fe2O3–silicone adhesive composite based humidity sensors. Optoelectron. Adv. Mater. Rapid Commun. 7, 861 (2013)

    Google Scholar 

  22. M.T.S. Chani, A.M. Asiri, K.S. Karimov, K.N. Atif, S.B. Khan, K.A. Alamry, Aluminium phthalocyanine chloride thin films for temperature sensing. Chin. Phys. B 22, 8101 (2013)

    Google Scholar 

  23. J.W. Dally, W.F. Riley, K.G. Mc Connel, Instrumentation for engineering measurements, 2nd edn. (Wiley, New York, 1993)

    Google Scholar 

  24. Z. Chen, C. Lu, Humidity Sensors: a review of materials and mechanisms. Sens. Lett 3, 274 (2005)

    Article  Google Scholar 

  25. M. Yang, Y. Li, X. Zhan, M. Ling, A novel resistive-type humidity sensor based on poly(p-diethynylbenzene). J. Appl. Polym. Sci. 74, 2010 (1999)

    Article  Google Scholar 

  26. Barsan N. OpreaA, U. Weimar, M.L. Bauersfeld, D. Ebling, J. Wollenstein, Capacitive humidity sensors on flexible RFID labels. Sens. Actuators B 132, 404 (2008)

    Article  Google Scholar 

  27. M.J. Yang, Y. Li, N. Camaioni, G. Casalbore-Miceli, A. Martelli, G. Ridolfi, Polymer electrolytes as humidity sensors: progress in improving an impedance device. Sens. Actuators B 86, 229 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry and the Center of Excellence for Advanced Materials Research (CEAMR) at King Abdulaziz University for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sher Bahadar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, A., Karimov, K.S., Akhtar, K. et al. Impedimetric humidity sensor based on the use of SnO2–Co3O4 spheres. J Mater Sci: Mater Electron 28, 4260–4266 (2017). https://doi.org/10.1007/s10854-016-6049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6049-1

Keywords

Navigation